Status of the GERmanium Detector Array Experiment (GERDA) at LNGS

C.M. Cattadori- INFN-Milano Bicocca
Per la collaborazione GERDA

\[Q_{2\beta} = 2039 \text{ keV} \]
Outline

- Neutrinoless Double Beta Decay ($0\nu\beta\beta$) & ^{76}Ge
- The design and construction of the GERDA setup.
 - The milestones
 - The Water Tank & The Cerenkov Muon veto
 - The Cryostat
 - The Ge detectors
 - The Ge detectors readout
 - The calibration system
- The first 3 months of data taking
- Preparation of GERDA Phase II
- Conclusions
Proposed by Majorana & Racah in 1937 (*Il Nuovo Cimento*).

It is forbidden in SM and requires

- Lepton number violation
- Neutrino is a Majorana particle having finite mass
- Existence of W_R

\[
\Delta L = 2 \quad \nu_e = \nu_e \\
\langle m_\nu \rangle \neq 0
\]
Why another experiment on 76Ge $0\nu\beta\beta$ decay?

- A debated claim @ $4.2\,\sigma$ indicate evidence of $0\nu\beta\beta$ with $T_{1/2} = 1.2 \times 10^{25}\,\text{y}$, $m_{ee}= 440\,\text{meV}$ with KK NME
- Estimated NME favorable in all the models $T_{1/2}^{0\nu} \sim 10^{27}\,\text{y}$ (for $<m_\nu> = 40\,\text{meV}$: $M_{0\nu}^{\text{nucl}} \sim 4$
- $Q_{\beta\beta} = 2039.06\pm 0.05\,\text{keV}$

$$(T_{1/2}^{0\nu})^{-1} \sim 5 \times 10^{-17}\,\text{[y}^{-1}]\,F_{0\nu}(Q,Z)\,|M_{0\nu}|^2\,m_\nu^2/m_e^2$$
GERDA: Sensitivity

 assessment E resolution: $\Delta E = 4 \text{ keV}$

 phase II

 phase I 18kg

 KKDC claim

~ 1 year data taking (assuming 18 kg y exposure) the KK

 claim: if true $\beta\beta$ decay GERDA will have 7 cts, above bckg of 0.5 cts \rightarrow probability

 that bckg simulate signal $\sim 10^{-5}$

 Bologna, 20th September 2010

 C.M. Cattadori - XCVI Congresso SIF
GERDA: The Collaboration

H. Aghaeim, M. Agostinif, M. Allardtc, A.M. Bakalyarovl, M. Balataa, I. Barabanovj, M. Barnabe-Heiderf, L. Baudisg, C. Bauerf, N. Becerici-Schmidm, E. Bellottig,h, S. Belousovyuk,j, S.T. Belyaevi, A. Bettinim,o, L. Bezrukovj, V. Brudanind, R. Brugneran,o, D. Budjasf, A. Caldwellm, C. Cattadorig,h, F. Cossavellam, E.V. Demidovak, A. Denisovj, A. Di Vercia, A. Dominae, A. D’Andragoraa, V. Egorovd, A. Ferellag, K. Freundp, F. Frohborgg, N. Froymab, A. Gangapanevj, A. Garfagninin,o, S. Gazzanof,a, R. Gonzaele de Ordunae, P. Grabmayrp, K.N. Gusevl,d, V. Gutentsovj, W. Hampelf, M. Heiself, S. Hemmerm, G. Heusserf, W. Hofmannf, M. Hulte, L.V. Inzhechikj, J. Janicskom, J. Joehmp, M. Junkera, S. Kondorovskyxj, I.V. Krichikovk, A. Klimenkod,j, M. Knappp, K-T. Knoepfelf, O. Kochetovd, V.N. Kornoukhovk,j, V. Kusminovj, M. Laubensteina, V.I. Lebedevl, B. Lehnere, D. Lenzm, S. Lindemannf, M. Lindnerf, I. Lippia, X. Lium, B. Lubandorzhievj, B. Majorovitsm, G. Meierhoferp, E. Nemchenokd, L. Pandolaa, K. Pelcb, F. Potenzaa, A. Pulliaf, S. Ribordif, F. Ritterp, C. Rossi Alvareze, R. Santorellig, J. Schreinerf, B. Schwingenheuerf, S. Schöngj, M. Shwchenkol,d, H. Simenf, A. Smolnikovd,j, L. Stancoo, F. Stelzerm, M. Tarkaa, A.V. Tikhomirovl, C.A. Uro, A.A. Vasenkok, A. Vauthm, O. Volynetsm, M. Weberf, M. Wojcikb, E. Yanovichj, S.V. Zhukovl, D. Zinatulinad, F. Zoccac, K. Zuberc, G. Zuzelb,

\textsuperscript{a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy
\textsuperscript{b) Institute of Physics, Jagellonian University, Cracow, Poland
\textsuperscript{c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
\textsuperscript{d) Joint Institute for Nuclear Research, Dubna, Russia
\textsuperscript{e) Institute for Reference Materials and Measurements, Geel, Belgium
\textsuperscript{f) Max Planck Institut für Kernphysik, Heidelberg, Germany
\textsuperscript{g) Dipartimento di Fisica, Università di Milano Bicocca, Milano, Italy
\textsuperscript{h) INFN Milano Bicocca, Milano, Italy
\textsuperscript{i) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy
\textsuperscript{j) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
\textsuperscript{k) Institute for Theoretical and Experimental Physics, Moscow, Russia
\textsuperscript{l) Russian Research Center Kurchatov Institute, Moscow, Russia
\textsuperscript{m) Max-Planck-Institut für Physik, München, Germany
\textsuperscript{n) Dipartimento di Fisica dell’Università di Padova, Padova, Italy
\textsuperscript{o) INFN Padova, Padova, Italy
\textsuperscript{p) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
\textsuperscript{q) Physik Institut der Universität Zürich, Zürich, Switzerland

\textsuperscript{http://www.mpi-hd.mpg.de/GERDA

\textsuperscript{~ 95 physicists
\textsuperscript{17 institutions
\textsuperscript{6 countries

(Germany, Italy, Russia, Poland, Belgium, Switzerland)
Bologna, 20th September 2010 C.M. Cattadori - XCVI Congresso SIF

Status:
- cryo-mu-lab
- water plant Rn monitor
- control room
- water tank - rdy
- clean room – rdy
- phase I lock – under test
- GERDA bldg - rdy
- phase I array rdy (scaled:)
- FE electronics 2 version avlb
- µ veto rdy
- LAr fill: Oct/Nov 09

Phase I Array Status:
- Array is ready (scaled version available)
- FE electronics version 2 is available
- µ veto system is ready
- Water tank and GERDA building are ready
- Clean room and Phase I lock are under test

LAr Fill:
- Scheduled for October/November 2009

Image Description

- **Cryostat:** Ready
- **Water Tank:** Ready
- **GERDA Building:** Ready
- **Clean Room:** Ready
- **Phase I Lock:** Under test
- **FE Electronics Version 2:** Available
- **µ Veto System:** Ready
- **LAr Fill:** Scheduled for Oct/Nov 2009

Diagram Details

- Cryo-mu-lab
- Control room
- Water plant
- µ veto
- FE electronics version 2
- LAr fill timeline
- GERDA building
- Phase I array
- Water tank

Technical Details

- Cryostat
- Water tank
- Clean room
- Phase I lock
- µ veto
- FE electronics version 2
- LAr fill schedule
- GERDA building
- Phase I array

Project Status

- All key components are ready or under construction.
- FE electronics version 2 is available for use.
- µ veto system is operational.
- Water tank and GERDA building are completed.
- Clean room and Phase I lock are being tested.
- LAr fill is scheduled for Oct/Nov 2009.

Conclusion

The project is progressing well, with all critical components ready for deployment. Further testing and commissioning are ongoing to ensure system readiness by the scheduled LAr fill date.
GERDA: a novel, ambitious approach to the background issues

GERDA goal: build a setup with a $B < 10^{-3} \, [c/kky] @ Q_{\beta\beta}$

GERDA distinctive features to reduce bckrgd of 10^{-6}

• Ge diodes operated naked in LAr

<table>
<thead>
<tr>
<th>Activity of TI-208 (μBq/kg)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rock, concrete</td>
<td>3000000</td>
</tr>
<tr>
<td>stainless steel</td>
<td>~ 5000</td>
</tr>
<tr>
<td>Cu(NOSV), Pb</td>
<td><20</td>
</tr>
<tr>
<td>water, purified</td>
<td>< 1</td>
</tr>
<tr>
<td>LN2, LAr</td>
<td>~ 0</td>
</tr>
</tbody>
</table>

- XCVI Congresso SIF
GERDA milestones

- Proposed in 2004 & funded by MPG
- Approved in 2005 by LNGS with location in Hall A
- 2005 Funded by BMBF, INFN, DFG (R&D), and Russia in kind
- WT & related plants:
 - Contract signed in 2006
 - Construction in LNGS Hall A 2007-2008
 - Muon veto constructed in 2009
- Cryostat & cryogenic systems
 - Contract signed in 2007
 - Construction @ company site in 2007-2008
 - Delivered @ LNGS in 2008
 - filled with LAr in Dec ’09 & cryogenic commissioning completed
- Building
 - Constructed in 2008
- Clean room & Lock
 - Constructed in 2009> Lock tested in 2009, moved underground in 2010
- Detectors:
 - Refurbishment technology defined in 2008 after proofing long term stability in LAr
Pictures from the construction time (2007-2010)
Pictures from the construction time (2007-2010)
The main GERDA subsystems

GERDA is a composite setup. The main sub-systems are listed in the following:

- Cryostat (and relate plants)
- Water tank e μ-veto (and related plants)
- Detectors insertion system (lock)
- Detectors
- Pulse readout and processing
- Calibration system
The Cryostat: design

The cooling serpentine: to sub-cool the LAr. No LAr refilling needed

- dedicated meas show that Rn in cryostat
 ~55 mBq with manifold, bellow, piping, sensors, cabling,

- Temp. difference suppresses exchange of LAr from neck and tank

- Rn in convective layers w/o shroud:
 30 mBq => 2 \times 10^{-3} \text{cts/(keV\cdot kg\cdot y)}

- Rn in convective layers with shroud:
 30 mBq => 1.5 \times 10^{-4} \text{cts/(keV\cdot kg\cdot y)}

- Homogenous mixing of radon in LAr:
 30 mBq => 4 \times 10^{-4} \text{cts/(keV\cdot kg\cdot y)}
The Phase I enrGe detectors

- 8 enrGe (former HdM&IGEX) + 6 natGe (from GTF) p-type coaxial Ge detector available
 - mass: 1-3 kg
 - $C_{det} = 30-40$ pF
- Deployed in strings of 3 detectors each
- Mounted in low-mass Cu holders
- HV contact: on Li surface by pressure
- Readout contact: in borehole spring-loaded
- All the detectors have been tested naked in LAr and perform well ($I-V$ & $R < 3$ keV @ 1.332 MeV).
- Long term stability experimentally proved

<table>
<thead>
<tr>
<th>Detector</th>
<th>Total mass (g)</th>
<th>HV (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG 1</td>
<td>958</td>
<td>3500</td>
</tr>
<tr>
<td>ANG 2</td>
<td>2833</td>
<td>4000</td>
</tr>
<tr>
<td>ANG 3</td>
<td>2391</td>
<td>3000</td>
</tr>
<tr>
<td>ANG 4</td>
<td>2372</td>
<td>3000</td>
</tr>
<tr>
<td>ANG 5</td>
<td>2746</td>
<td>1800</td>
</tr>
<tr>
<td>RG 1</td>
<td>2110</td>
<td>4500</td>
</tr>
<tr>
<td>RG 2</td>
<td>2166</td>
<td>4000</td>
</tr>
<tr>
<td>RG 3</td>
<td>2087</td>
<td>3500</td>
</tr>
<tr>
<td>GTF 32</td>
<td>2321</td>
<td>3200</td>
</tr>
<tr>
<td>GTF 42</td>
<td>2467</td>
<td>3000</td>
</tr>
<tr>
<td>GTF 44</td>
<td>2465</td>
<td>3500</td>
</tr>
<tr>
<td>GTF 45</td>
<td>2332</td>
<td>1500</td>
</tr>
<tr>
<td>GTF 110</td>
<td>3046</td>
<td>3000</td>
</tr>
<tr>
<td>GTF 112</td>
<td>2965</td>
<td>2500</td>
</tr>
<tr>
<td>Prototype</td>
<td>1560</td>
<td>3000</td>
</tr>
</tbody>
</table>
The Ge detector readout: Front-end

- Cryogenic FE circuit g-ray spectrometry class. Architecture: external JFET + following amp. stage (CMOS OPAMP)

- Achieved Performances @ LN:
 - Intrinsic noise < 1 keV (< 150 e r.m.s.)
 - Rise time: 30-40 ns

- Radiopurity (232Th) with screened components:
 - 350 µBq/PCB (3ch) for ASIC FE
 - 150 µBq/PCB (3ch) for CC2 (based on commercial CMOS OPAMP)
The Calibration System

- 228Th sources (γ-lines at 2614 keV, 2103 keV, 1592 keV, 583 keV) inserted besides detector strings
- a 20 kBq source provides an event rate in detectors of ~ 600 Hz in calibration, allowing calibration ~ 1 h

- **Ta ring**: to shield detectors when sources are in parking position
- **parasitic n-activity** of sources from (α,n) reaction on substrate materials measured with dedicated setup

 $(2.7 \pm 0.5) \times 10^{-2}$ n/s for the 14 kBq source
The first three months of data taking

- GERDA started the commissioning data taking with a natGe pilot string (3 detectors for a total mass of 7.62 kg of natGe)
- Few technical problems related to HV → solved
- Up to now available a statistic of ~250 kg*d divided in runs taken in different configurations
- Bad news:
 - Immediately visible an 42Ar signal much larger (~ 15) than expected at the 1524 keV γ-line
- Good news:
 - No peak visible from none of the 238U (1764,2204), 232Th(2614,583 etc.), 40Kmain γ-lines
Spectra collected during 17 days with 2.3 kg natGe detector in GERDA setup

$\sim 1.5 \text{ cts/(kg}^*\text{day)}$
$^{42}_{18}$Ar

$^{42}_{19}$K

\[Q_{\beta} = 600 \text{ keV} \]

\[12.360 \text{ h} \]

\[T_{1/2} = 12.36 \text{ h} \]

\[Q = 3525.4 \text{ keV} \]

- Mostly a pure β emitter
 - Most intense γ ray at 1524.73 keV (18.1%)

\[\gamma(^{42}\text{Ca}) \text{ from } ^{42}\text{K} (12.360 \text{ h}) \beta^{-} \text{ decay } \text{< for } l\gamma%\text{ multiply by 0.18089> } \]

- $312.6 (\uparrow 1.86 \text{ keV}) \text{ E2}$
- $588.87 (\uparrow <0.0021) \text{ E2}$
- $694.54 (\uparrow 0.018 4) \text{ (E1)}$
- $899.43 (\uparrow 0.265 14) \text{ M1+E2; } \delta = -0.18 2$
- $1022.78 (\uparrow 0.111 8) \text{ (E1)}$
- $1227.66 (\uparrow 0.013 6) \text{ (E2)}$
- $1524.70 (\uparrow 100) \text{ E2}$
- $1922.18 (\uparrow 0.228 22) \text{ E1(M+M2); } \delta = +0.02 7$
- $2424.09 (\uparrow 0.110 16) \text{ E2}$

Background at $Q_{\beta \beta}$ by:

- β, bremsstrahlung from β and 2424 keV γ-ray
^{42}Ar: expected values and possible origin

- ^{42}Ar is mainly generated by $^{40}\text{Ar}(\alpha, 2p)^{42}\text{Ar}$ reaction in atmosphere and fall-out from atmospheric nuclear explosions.

<table>
<thead>
<tr>
<th>Measurements of upper concentration limits of ^{42}Ar in Ar</th>
<th>[μBq/LAR]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992 Arpesella et al. LNGS internal report 92/27: 1.2×10^{-18} atoms 42/40 =</td>
<td>16800</td>
</tr>
<tr>
<td>1995 Cennini et al. (ICARUS 3H) NIM A 356,526-529: 4×10^{-18} atoms 42/40 =</td>
<td>56000</td>
</tr>
<tr>
<td>1998 Ashitkov V.D.et al. NIM A 416, 179-181: 6×10^{-21} atoms 42/40 =</td>
<td>84</td>
</tr>
<tr>
<td>1999 Ashitkov V.D. et al. Nucl. Phys. (Proc Suppl.) 70,233: 5×10^{-21} g/g =</td>
<td>70</td>
</tr>
<tr>
<td>2003 Ashitkov V.D. et al. arXiv:nucl-ex/0309001: 4.3×10^{-21} g/g =</td>
<td>60</td>
</tr>
<tr>
<td>2004 Ruben Saakyan thesis: 4.3×10^{-21} atoms 42/40 =</td>
<td>60</td>
</tr>
</tbody>
</table>

Liquid Ar ionization chamber to measure ^{100}Mo (306 g enriched and 138 g natural) 113 d and 13 d

- Energy spectrum of single electron events full dynamic range

- 55 kg LAR

- <0.094 c/(kg*d) in GERDA meas. geometry
Simulated 42Ar spectrum in GERDA geometry (detectors surrounded by homogeneous LAr bath)

42K total spectrum (3 detectors) for 42Ar/40Ar = 4.3×10^{-21} g/g

- $< C_{rate} @ 1524$ keV 0.094 (cts/kg*d)
- $C_{rate} @ Q_{\beta\beta} < 1.7 \times 10^{-3}$ (cts/keV*kg*y)

- From βs (3.5 MeV) entering in the detector where there is no dead layer or passing through it
- Hard bremsstrahlung of 3.5 MeV βs in LAr
Possible explanations and actions

- The reference ^{42}Ar conc. measurements are wrong (of a large factor \rightarrow unlikely)
- The ^{42}Ar concentration in atmosphere has large variations, and the GERDA LAr has a particularly high concentration of ^{42}Ar
 - \rightarrow measure in two independent setups (GERDA & LARGE).
- The $^{42}\text{K}^+$, which is produced positively charged in the $^{42}\text{Ar} \beta$ decay, is not uniformly distributed around the detectors: $^{42}\text{K}^+$ (lifetime in LAr unknown) is drifted towards the detectors holder (GNDed surfaces) and detector borehole, by the detector bias E_{field} dispersed in LAr (detectors are naked!):
 - indications of this mechanism comes from (Cts@Peak)/(Cts above peak) ratio
- \rightarrow Perform a series of runs placing the metallic surfaces around the detectors (shroud and mini-shroud) at various potentials and measure the cts rate: \rightarrow results encouraging, already achieved a relevant reducing factor. Continue on this road!
The mini-shroud

- A Cu mini-shroud has been inserted,
 - to close field lines onto a surface few cm away from the detector (not onto detector holders)
 - To prevent ions sucked from the LAr bath to reach the detector
- The detector string is inside the mini-shroud
- Significant 42K signal reduction
- No bkgrd increase
The Next steps

In the next months our activity will follow this scheme:

- Complete the measurements devoted to understand the 42Ar signal and pursue mitigation actions.
- Installation of the 3-string arm.
- Test of 3-string arm with mockup & capacitors.
- Optimization of noise in the underground setup (grounding, tests with FE+ capacitors and detector mockup).
- Deploy the enrGe detectors.
The preparation of GERDA Phase II: \textit{enr}Ge processing

on 30 April 2010

- 36.6 kg >50 Ohm material produced. 97\% of the 37.5 kg available \textit{enr}Ge is now 6N material.

- The integrated exposure has been about 5.2 days including the transport from Geel.

- All the material is packed in two boxes and is underground in the Rammelsberg mine.
PHASE II Detectors allowing enhanced PSD: Choice of BEGe as reference type

- Applying PSA cuts and requiring 90% survival probability for the 232Th DEP (mostly Single Site Events $\rightarrow 0\nu\beta\beta$-like)

- 12% survival of the γ-line 212Bi line (mostly Multi-Site Events $\rightarrow \gamma$-bgd like)

- Segmented & BEGe show similar PSD performances, but BEGe simplest readout and cabling \rightarrow benefit for setup radiopurity

- 3 natGe + 2dep Ge BEGe detectors tested so far: all of them excellent $En\ Res < 2.0\ keV \ @ \ 1.332\ MeV$
PSD: comparison of results from all the BEGe tested in GERDA

<table>
<thead>
<tr>
<th>Dim.sns</th>
<th>Contact dim [mm]</th>
<th>Mass [g]</th>
<th>V_{depl} [V]</th>
<th>Compton @Qbb</th>
<th>DEP 1592 keV</th>
<th>FEP 1621 keV</th>
<th>SEP 2103 keV</th>
<th>FEP 2614 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>81 x 32 Hd</td>
<td>15</td>
<td>868</td>
<td>4000</td>
<td>39 ± 2</td>
<td>90 ± 1.6</td>
<td>9.5 ± 1.5</td>
<td>5.8 ± 0.6</td>
<td>7.7 ± 0.7</td>
</tr>
<tr>
<td>70 x 32 LNGS</td>
<td>15</td>
<td>632</td>
<td>3000</td>
<td>37.5 ± 0.5</td>
<td>90 ± 0.6</td>
<td>11.5 ± 0.1</td>
<td>6.2 ± 0.4</td>
<td>6.4 ± 0.1</td>
</tr>
<tr>
<td>60 x 26 Geel</td>
<td>15</td>
<td>390</td>
<td>3000</td>
<td>45 ± 2</td>
<td>90 ± 3</td>
<td>18 ± 3</td>
<td>6.8 ± 1.7</td>
<td>14 ± 3</td>
</tr>
<tr>
<td>80 x 30 Geel</td>
<td>15</td>
<td>825</td>
<td>3500</td>
<td>49 ± 2</td>
<td>90 ± 3</td>
<td>29 ± 2</td>
<td>23 ± 2</td>
<td>Not avlbl</td>
</tr>
<tr>
<td>74 x 33 Depl CC</td>
<td>9</td>
<td>752</td>
<td>3500</td>
<td>38.3 ± 0.3</td>
<td>90 ± 1.1</td>
<td>10 ± 0.6</td>
<td>5.4 ± 0.3</td>
<td>8.3 ± 0.1</td>
</tr>
<tr>
<td>74 x 32 Depl DD</td>
<td>22</td>
<td>~750</td>
<td>3500</td>
<td>39.8 ± 0.3</td>
<td>90 ± 1.1</td>
<td>11.3 ± 0.6</td>
<td>5.8 ± 0.4</td>
<td>8.8 ± 0.1</td>
</tr>
</tbody>
</table>
Phase II: The recentest results with bare BEGe (80 x 40 mm) & cold FE in LARGE setup (@GDL): long term stability proved

LAr scintillation light readout implemented
Conclusions

- The construction of the GERDA setup at LNGS is completed since spring 2010.
- All the recommendations of the safety review have been implemented.
- Commissioning started in June 2010 with a pilot string of 3 \(^{nat}\text{Ge}\) detector.
- Performances not as good as in September 2009 tests (\(R = 5-7\) keV @ 2614 keV) dominated by EM disturbances.
- Available a statistic of \(\sim 250\) kg\(\cdot\)d.
- A concentration of \(^{42}\text{Ar}\) a factor \(\sim 15\) larger than expected (from measurements available in literature) is observed.
- Actions are ongoing to understand the origin of the extra \(^{42}\text{Ar}\) signal and to mitigate its impact on the detector background index.
- Still no background visible from U, Th and K (B of the setup matches the design).
- Run with \(^{enr}\text{Ge}\) will then follows (time schedule depends on the outcome of the ongoing commissioning).
- The BEGe detectors have been chosen as reference detectors for the GERDA PHASE II. We are defining and negotiating the contract with Canberra to produce the \(^{enr}\text{Detectors for GERDA Phase II. The x-tal pulling and diode production will start spring 2011.}\)
EXTRA slides
Signature of $0\nu\beta\beta$ decay and sensitivity on $T_{1/2}^{0\nu}$

\[\varepsilon = \text{detection efficiency} \]
\[a = \beta\beta \text{ isotope fraction} \rightarrow \text{enrichment} \]
\[M = \text{mass of detector in kg} \]
\[T = \text{data taking time [y]} \]
\[B = \text{background index in cts/(keV kg y)} \]
\[R = \text{energy resolution at } Q_{\beta\beta} \text{ [keV]} \]

With bck

\[T_{1/2}^{0\nu} \propto a\varepsilon \sqrt{\frac{MT}{BR}} \]

\[T_{1/2}^{0\nu} \propto a\varepsilon MT \quad \text{Bck free} \]
0νββ rate and the effective neutrino mass

0νββ rate ~ (effective Majorana neutrino mass)²

\[< m_ν > \geq \sqrt{m_1^2 + \Delta m_{\text{atm}}^2} \left| U_{e1}^{L} \right|^2 e^{i\phi_2} + \left| U_{e2}^{L} \right|^2 e^{i\phi_3} \]

\[< m_ν > \geq m_1 \left| U_{e1}^{L} \right|^2 + \left| U_{e2}^{L} \right|^2 e^{i\phi_2} \left(1 + \frac{\Delta m_{\text{solar}}^2}{2m_1} \right) \]

\[\Delta m_{\text{atm}}^2 = m_3^2 - (m_2^2 + m_1^2)/2 \]

Rate is the quantity measured in ββ experiments

\[(T_{1/2}^{0ν})^{-1} \sim 5 \times 10^{-17} \text{ [y}^{-1} \text{]} \]

\[F_{0ν}(Q,Z) |M_{0ν}|^2 m_ν^2/m_e^2 \]

\[\text{From Vissani, Strumia hep-ph/0606054v2} \]

Bologna, 20th September 2010

C.M. Cattadori - XCVI Congresso SIF
Germanium detectors are an established technology.

Feasible to scale up experiment by subsequently adding more detectors → GERDA staged approach (Phase I + Phase II)

Ge density = 5.3 g cm$^{-3}$ → compact setup

Source = detector → high efficiency!

High intrinsic purity and energy resolution $O(0.1\%-0.2\%)$ allowing understanding of background sources and geometry.

76Ge is an appealing $0\nu\beta\beta$ candidate

76Ge isotopic abundance = 7.44 %, but enrichment of 76Ge possible at centrifuge up to >80% (reasonable cost)

Low Atomic Weight (1 kg of 76Ge = 13.1 Moles = 7.9×10^{24} nuclei)
The Ge detectors performances achieved so far in LAr in summer 2009 tests (first commissioning)

Clean glove box (N2/hepa) with commissioning lock

2.9 keV (FWHM) @ 1.3 MeV

Best resolution achieved in setup: 2.7 keV (FWHM)