The GERDA Experiment: Status and Perspectives

Călin A. Ur, INFN Padova for the GERDA collaboration
1. The GERDA experiment
 - short introduction
2. Status of Phase I
 - installation
 - first measurements
3. Perspectives for Phase II
 - the detectors
 - R&D
Search for the half-life of the $0\nu\beta\beta$-decay of ^{76}Ge

$$2\nu\beta\beta: (A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$$

$$0\nu\beta\beta: (A,Z) \rightarrow (A,Z+2) + 2e^-$$

Majorana nature
Physics beyond SM
Absolute mass scale
- Hierarchy: degenerate, inverted or normal
- (effective) neutrino mass

Best limits on $0\nu\beta\beta$-decay used ^{76}Ge (86%) (IGEX & Heidelberg-Moscow):
$$T_{1/2} > 1.9 \times 10^{25} \text{y} \ (90\% \text{CL})$$
(& 6σ claim for evidence)
Sensitivity of the GERDA Experiment

\[T_{1/2}^{0\nu}(y) > \frac{\log 2 \cdot N_A \cdot \varepsilon \cdot k_{\text{enr}}}{k_{\text{CL}}} \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} \]

- well established enrichment technique (reasonable cost for > 80%)
 \(\Rightarrow \) enrichment \(k_{\text{enr}} = 86\% \, ^{76}\text{Ge} \)
- established detector technologies
 \(\Rightarrow \) large total mass \(M \) (expandable)
- very good energy resolution:
 \(\Rightarrow \) small \(\Delta E \sim 2\text{-}3 \, \text{keV} \)
- very good detection efficiency because detectors made of source material
 \(\Rightarrow \varepsilon \sim 1 \)
- detector-grade semiconductors are high-purity materials (low background)
 \(\Rightarrow \) small direct contribution to the background index \(B \)

Optimize the parameters

- Bare \(^{\text{enr}}\text{Ge}-\text{diodes array in LAr} \)
 +
- Shield: high-purity LAr/H\(_2\)O
Background Sources in the GERDA Experiment

<table>
<thead>
<tr>
<th>Source</th>
<th>B [10^{-3} cts/(keV kg y)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. γ from 208Tl (232Th)</td>
<td><1</td>
</tr>
<tr>
<td>Ext. neutrons</td>
<td><0.05</td>
</tr>
<tr>
<td>Ext. muons (veto)</td>
<td><0.03</td>
</tr>
<tr>
<td>Int. 68Ge ($t_{1/2}$ = 270 d)</td>
<td>12</td>
</tr>
<tr>
<td>Int. 60Co ($t_{1/2}$ = 5.27 y)</td>
<td>2.5</td>
</tr>
<tr>
<td>222Rn in LAr</td>
<td><0.2</td>
</tr>
<tr>
<td>208Tl, 238U in holder</td>
<td><1</td>
</tr>
<tr>
<td>Surface contamination</td>
<td><0.6</td>
</tr>
</tbody>
</table>

Target values:
- **Phase I:** $B < 10^{-2}$ cts/(keV· kg· y)
- **Phase II:** $B < 10^{-3}$ cts/(keV· kg· y)

Muon veto
- 180 days exposure after enrichment + 180 days underground storage
- 30 days exposure after crystal growing

208Tl, 238U in holder
Background Reduction in the GERDA Experiment

Suppression of μ-flux $> 10^6$

Background reduction methods

- Underground laboratory
- Material cleaning
- Passive shield (Cu&Pb&LAr)
- Muon veto

Pulse shape analysis vs. detector segmentation
- Detector anti-coincidence
- R&D: LAr scintillation
Phase I:
- 18 kg of enriched Ge
- 1 year exposure
- After 1 year, able to verify the KK claim

Phase II:
- 40 kg of enriched Ge
- 3 years exposure
- KKDC claim

Phase III (GERDA+Majorana):
- 1 ton experiment → ~50 meV

Mass hierarchy:
- Normal: $\Delta m^2_{23} > 0$
- Inverted: $\Delta m^2_{23} < 0$
- Degenerate: $\Delta m^2_{23} = 0$

GERDA Phase I - after 1 year able to verify the KK claim
Status of Phase I

- clean room - rdy
- cryo-mu-lab
- control room
- water plant
- Rn monitor
- GERDA bldg - rdy

- phase I lock - single-string arm
- phase I array rdy
- cryostat - rdy
- water tank - rdy
- DAQ room
- FE electronics 2 version avlb
- μ veto rdy
- water plant
Mounting of GERDA

Unloading of vacuum cryostat (6 Mar 2008)
Produced from selected low-background austenitic steel

Construction of water tank
$\varnothing = 10 \text{ m}$
$H = 9.5 \text{ m}$
$V = 650 \text{ m}^3$

Construction of clean room

Muon veto completed

27 Feb 09

19 May 08

Aug 09
Phase I Detectors

- 8 ^{enr}Ge (HdM&IGEX) + 6 ^{nat}Ge (GTF) p-type coaxial Ge detector refurbished
- ^{enr}Ge mass: 1-3 kg (total 17.9 kg)
- $C_{det} = 30\text{--}40$ pF
- deployed in strings of 3 dets.
- mounted in low-mass Cu holders
- HV contact: on Li surface by pressure
- readout contact: in borehole spring-loaded
- all the detectors have been tested naked in LAr and perform well (I-V & R < 3 keV @ 1.332 MeV).
- **Long term stability experimentally proved**
Stability of Phase I Detectors in LAr/LN₂

Apparent problem* of 'Limited long-term stability of naked detectors in liquid nitrogen as result of increasing leakage current' resolved by GERDA:

• operated 3 HPGe detectors in LN/LAr
• 2 years of experience, >50 cycles

► with proper procedure no problem, in contradiction to claim*

* Klapdor-Kleingrothaus & Krivosheina, NIM A566 (2006) 472

no deterioration after 1 year of operation in LAr
M. Barnabé-Heider, PhD thesis '09
Commissioning with $^{\text{nat}}$Ge Det.-Running NOW

• Summer/autumn 2009: integration test of phase I detectors, FE, lock, DAQ, LAr dewar
 ⇒ energy resolution ~ 2.7 keV @ 1332 keV

• Apr/May 2010: Installation of single-string lock in the GERDA cleanroom
• May 2010: Deployment of FE & detector mock-up, followed by first deployment of a of non-enriched det.
• June 2010: Water tank filling

• June 2010: Commissioning run with 3 $^{\text{nat}}$Ge detectors
• four cooling cycles made until now
• grounding problems
• characterization runs with Th source
• optimizing energy reconstruction algorithms from digital data
• long-term background measurement are in progress
nat Ge Detectors in LAr - 228Th source

- GTF 45: 4.4 keV FWHM
- GTF 32: 4.0 keV FWHM
- GTF 112: 4.2 keV FWHM

Pulser
Operation of the 3 $^{\text{nat}}$Ge Detectors String

<table>
<thead>
<tr>
<th>Date</th>
<th>Detector</th>
<th>Signal cable length</th>
<th>FWHM [keV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pulser</td>
</tr>
<tr>
<td>11/07/2010</td>
<td>GTF 45</td>
<td>~35 cm</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>GTF32</td>
<td>~50 cm</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>GTF112</td>
<td>~65 cm</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- July 16 start of background measurement with Flash ADC (FWHM ~ 5 keV)
- pulser at 0.1 Hz
- Muon veto signal recorded with the Flash ADC

- No indication of background from U/Th/Co
- Clear peak at 1524 keV (line from 42Ca)
42Ar Background ‘Dilema’

Measurements in LArGe with BEGe
- 10 times more 42Ar activity with GTF (in GERDA and LArGe setups)
- even more

Study of the problem:
- origin of the effect
- possible solutions to reduce it

Mounted a mini-shroud around the 3 detectors in the GERDA setup
- reduction of the effect

More work needed with both setups: LArGe and GERDA

A.S. Barabash,
Proc. Int. Workshop on Technique and Application of Xenon Detectors 2002
42Ar/Ar = 3 x 10^{-21}
R&D for Phase II Detectors

BEGe type detectors were chosen for the Phase II of the GERDA experiment

- good energy resolution and noise characteristics
- excellent rejection capability of discrimination between single-site and multiple-site events based on PSD analysis
- simpler electronic configuration as compared to segmented detectors / less background due to the reduced number of FE electronics channels and less cables

Presently tests are run with 2 \(^{\text{depl}}\text{Ge}\) and 3 \(^{\text{nat}}\text{Ge}\) BEGe detectors
Discrimination based on A/E Parameter

A = maximal current signal amplitude
E = energy of the event

A/E for SSE is independent of the energy and the interaction location inside the crystal volume.

A/E for MSE is smaller

D. Budjas et al., JINST 4 P10007 (2009)
M. Agostini et al., to be published

PSD cut - 90% of the 208Tl 2614 keV DEP
Test of BEGe performance in LArGe

First test of a naked BEGe detector in LAr (LArGe test bench)

- Maintains its spectroscopic characteristics
- Good PSA
- Importance of the LAr veto for the reduction of the γ-ray backg. (R&D needed for Phase III)
Construction of GERDA is concluded
- The cryostat and the water tank were filled
- Since June 2nd commissioning runs with Phase I $^{\text{nat}}$Ge detectors and the single-string arm are in progress
- Long-term background measurements are presently running with $^{\text{nat}}$Ge GTF detectors
- By November the 3-strings lock will be installed and it will be tested with mockup and $^{\text{nat}}$Ge detectors
- Mounting of the enriched detectors depends on the results from these measurements
- Presumably first results from Phase I will be available in 2011
- The R&D for the Phase II BEGe detectors development is running in parallel with the preparation of Phase I
- The BEGe detector was chosen for the Phase II due to its excellent noise and PSD characteristics

a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy
b) Institute of Physics, Jagellonian University, Cracow, Poland
c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
d) Joint Institute for Nuclear Research, Dubna, Russia
e) Institute for Reference Materials and Measurements, Geel, Belgium
f) Max Planck Institut für Kernphysik, Heidelberg, Germany
g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy
h) INFN Milano Bicocca, Milano, Italy
i) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy
j) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
k) Institute for Theoretical and Experimental Physics, Moscow, Russia
l) Russian Research Center Kurchatov Institute, Moscow, Russia
m) Max-Planck-Institut für Physik, München, Germany
n) Dipartimento di Fisica dell’Università di Padova, Padova, Italy
o) INFN Padova, Padova, Italy
p) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
q) Physik Institut der Universität Zürich, Zürich, Switzerland
r) Shanghai Jiao Tong University, Shanghai, China

Collaboration

~ 100 members
18 institutions
7 countries

September 2010
C.A. Ur - NOW2010