GERmanium Detector Array – search for $0\nu2\beta$ decay

Josef Jochum
Kepler Center for Astro and Particle Physics
University Tübingen
0ν2β decay

0ν2β- only if:
\[\bar{\nu} = \nu \quad \text{Maiorana-particle}\]
\[\nu_r \leftrightarrow \nu_l \quad \text{other helicity} \quad \sim (1-(v/c)^2) \quad \text{for } m_\nu > 0\]

2ν2β-decay

\[\Delta L = 2\]

\[T_{1/2} (0\nu)^{-1} = G M^2 m_{\beta\beta}^2\]

effective neutrino mass

phase space

nuclear matrix element
2β-decay - 76Ge
Known knowns and known unknowns

knowns

neutrino-oscillations
nonzero neutrino mass
large mixing angles

unknowns:

absolute mass scale?
mass hierarchy?
Majorana- or Dirac?
…

\[\nu = \nu \]
Neutrinos in Cosmology - structure formation

$$\Omega_{\text{matter}} \sim 0.30$$

$$\Omega_{\nu} < 0.02$$

$$\Omega_{\nu} < 0.02$$

$$\Sigma m_{\nu_i} < 1 \text{eV}$$
0ν2β decay – effective neutrino mass $m_{\beta\beta}$

$0\nu2\beta$-decay \(\propto |\langle m_{\beta\beta} \rangle| = |\sum m_i U_{ei}^2|$

$m_{\beta\beta} = |m_{\beta\beta}^{(1)}| + |m_{\beta\beta}^{(2)}| \cdot e^{i\Phi_2} + |m_{\beta\beta}^{(3)}| \cdot e^{i\Phi_3}$

\[
|m_{\beta\beta}^{(1)}| = |U_{e1}|^2 m_1 \\
|m_{\beta\beta}^{(2)}| = |U_{e2}|^2 \sqrt{m_1^2 - \Delta m_{21}^2} \\
|m_{\beta\beta}^{(3)}| = |U_{e3}|^2 \sqrt{m_1^2 + \Delta m_{31}^2}
\]

solar $\Rightarrow |U_{e1}|^2, |U_{e2}|^2, \Delta m_{21}^2$

atmosph. $\Rightarrow |\Delta m_{31}^2|$

CHOOZ $\Rightarrow |U_{e3}|^2 < 0.05$

\Rightarrow unknown parameters: m_1, sign(Δm_{31}^2), CP-phases Φ_2, Φ_3
Sensitivity of $0\nu2\beta$ - decay search

theory:

$$T_{1/2} (0\nu) = (G M^2 m_{\beta\beta}^2)^{-1}$$

experiment:

$$T_{1/2} (0\nu) > 4.2 \cdot 10^{26} y \cdot \varepsilon \cdot (a/A) \cdot \sqrt{Mt/B \Delta E}$$

$$m_{\beta\beta} < \sqrt{\frac{\sqrt{B \Delta E / Mt}}{\varepsilon a}}$$

$$\approx 1 / \sqrt{T_{1/2} (0\nu)}$$

- ε - detection efficiency at $Q_{\beta\beta}$
- a - $\beta\beta$ isotope fraction
- M - mass of detector in kg
- t - measurement time in years
- B - background in cts/(keV kg y)
- ΔE - FWHM energy resolution at $Q_{\beta\beta}$ in keV
- A - mass number
Sensitivity of $0\nu2\beta$ - decay search

$$m_{\beta\beta} < \sqrt{\frac{\sqrt{B \Delta E}}{\varepsilon_a} / M_t}$$

Germanium \Rightarrow Detector $=$ Source
high ε - detection efficiency at $Q_{\beta\beta}$
as large as possible number of target atoms
enrichment of ^{76}Ge to 86% \Rightarrow high a - $\beta\beta$ isotope fraction
large array (up to 100 kg) \Rightarrow large M - mass of detector in kg
germanium Detectors
\Rightarrow very good ΔE - FWHM energy resolution
Long measurement time t

REDUCE BACKGROUND B !!!!!
Sensitivity of $0\nu2\beta$-decay search

\[m_{\beta\beta} < \sqrt{\frac{\sqrt{B \Delta E / Mt}}{\epsilon a}} \]

state of the art for Ge before GERDA

IGEX, Heidelberg-Moscow experiments

\[Mt = 71.7 \text{ kg y} \]
\[B = 0.11 / \text{(keV kg y)} \]
\[a = 86\%, \epsilon \sim 1, \Delta E \sim 3 \text{keV} \]

Sensitivity

\[T_{1/2} \sim 2 \times 10^{25} \text{y} \]
\[m_{\beta\beta} < 350 \text{ meV} \]

Claim of Evidence!

to test and to improve
- increase Mt
- reduce background B

\[\Rightarrow 1 \text{ ton of isotopes and } B < 10^{-3} / \text{(kg y)} \]
for 10 meV scale
GERDA - Idea

Hd-Moscow background given by:
- detectors surroundings
- cosmogenic activation of Ge

GERDA - Phase 1:
bare detectors in purified liquid Argon and low Z shield
GERDA - Idea

Hd-Moscow background given by:
- detectors surroundings
- cosmogenic activation of Ge

GERDA - Phase 2:
reduce cosmogenic background by event recognition:
segmented detectors and/or pulse shape
+ increase ^{76}Ge-mass

$0\nu2\beta$ – events are single site
Co background are multiple site
GERDA - set up at Gran Sasso

from outside to inside

Water tank:
- Gamma shield
- Neutron shield
- Muon Veto

Cryostat:
- contains liquid Ar
- additional Cu shield inside

Liquid Argon provides:
- pure ‘inner‘ shielding
- operating T for detectors

Bare Ge detectors
support structure as
light as possible
detectors hold by strings

low Z materials, liquids can be purified, ...

64 m3 of liquid Ar, 650 m3 of water,
4m Ø steel cryostat, 10 m Ø water tank
GERDA - set up at Gran Sasso

- Stainless steel cryostat: 25t, $U/Th < 5 \text{mBq/kg}$
- Internal Cu shield: 20t, $U/Th < 16 \text{mBq/kg}$
- Radon Shroud inside Cryostate to avoid Rn convection to Ge detectors

- Ge detector array:
 - made up of detector strings
 - in the center of the LAr-cryostat
GERDA - Phases

GERDA - Phase I:
- 18 kg 76Ge (existing from Hd-M and IGEX)
- 15 kg 29NatGe
- background 10^{-2} / (keV kg y)
- test claim within 1 year
 (6cts with 0.5 cts bckgrd)

GERDA - Phase II:
- new segmented or BeGe detectors
 ⇒ adds > 20kg 76Ge
 ⇒ distinguish multi site / single site
- several detectors depleted in 76Ge
- background 10^{-3} / (keV kg y)
 (= 1 count / (keV ton year) !!!)

GERDA - Phase III:
- ~1 ton 76Ge
- world wide GERDA-MAJORANA collaboration
- background 0.1 / (keV ton y)
- test inverted neutrino mass hierarchy
- $m_{\beta\beta}$ ~ (some) 10meV
Long term stability test of HPGe detectors in LAr

- $\Delta E \sim 2.5$ keV, leakage current stable
- problems reported by GENIUS TF
 overcome by GERDA (different detector types)

IGEX and HdM crystals

- removed from vacuum cryostats
- refurbished by Canberra
- less than 1 week above ground
- new low mass holders
- now stored at LNGS
 in vacuum containers
GERDA – Status – Phase II detectors

Preparation of 18 fold segmented detectors
- novel ‘snap’ contact
- only small amount of extra material (a few 10g / detector)
- successfully tested

http://wwwgerda.mppmu.mpg.de/
GERDA – Status – Phase II detectors

Detector in vacuum exposed to Th228 source

<table>
<thead>
<tr>
<th>sample</th>
<th>data</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co60</td>
<td>14.2 ± 2.1</td>
<td>12.5 ± 2.1</td>
</tr>
<tr>
<td>Th228</td>
<td>1.68 ± 0.02</td>
<td>1.66 ± 0.05</td>
</tr>
</tbody>
</table>

(Double-escape peak (single-site dominant)
1620keV Bi212 (multi-site dominant)

(depending on source position)
Phase-II detector candidate: point-contact detector
- enhanced efficiency for low-energy gammas (BeGe)
- low capacitance (⇒ low noise)
- position dependent pulse shape

Canberra thick window broad energy detector (BEGe, 878g)

- Successful R&D
 ✓ Observed complete charge collection from full detector volume.
 ✓ No position dependence of pulse height and resolution.
 ✓ Similar reduction factor achieved.
- BEGe production yield under investigation.
GERDA – Set up at Gran Sasso – Cryostat 03/08
GERDA – Set up at Gran Sasso – Water Tank 06/08
GERDA – Set up at Gran Sasso – Clean Room 05/09
GERDA – Set up at Gran Sasso – Muon Veto 06/09

Inside the water tank
GERDA – Outlook

Commissioning of GERDA set up at Gran Sasso will start in 2009

Phase I (2009-2011):
After 1 year data taking (~ 15 kg y) with background 10^{-2} / (keV kg y)
⇒ GERDA can confirm or refute claim of $0\nu 2\beta$ observation

\textbf{Limit: half live } $T_{1/2}(0\nu) > 3 \times 10^{25} \text{ y, } m_{\beta\beta}^{QRPA, SM} < (0.2 - 0.5) \text{ eV}$

Phase II (starting 2011):
- Total ^{76}Ge mass of 40kg
- Background reduction by segmented detectors and/or PSA
- After exposure of 100 kg y with background 10^{-3} / (keV kg y)
⇒ test degenerate neutrino mass regime

\textbf{Limit: half live } $T_{1/2}(0\nu) > 1.5 \times 10^{26} \text{ y, } m_{\beta\beta}^{QRPA, SM} < (0.1 - 0.2) \text{ eV}$

Phase III (proposed to start 2014):
- GERDA – MAJORANA collaboration
- mass of ^{76}Ge at 1 ton scale
- background reduction to 10^{-4} / (keV kg y)
⇒ test inverted neutrino mass regime
GERDA – Collaboration

Institute for Reference Materials and Measurements, Geel, Belgium
Institut für Kernphysik, Universität Köln, Germany
Max-Planck-Institut für Kernphysik, Heidelberg, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Physikalisches Institut, Universität Tübingen, Germany
Technische Universität Dresden, Germany
Dipartimento di Fisica dell’Università di Padova e INFN Padova, Padova, Italy
INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
Università di Milano Bicocca e INFN Milano, Milano, Italy
Jagiellonian University, Cracow, Poland
Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
Joint Institute for Nuclear Research, Dubna, Russia
Russian Research Center Kurchatov Institute, Moscow, Russia
University Zurich, Switzerland

~97 scientists.