Prompt Gamma Rays in 77Ge after Neutron Capture on 76Ge

Georg Meierhofer
Kepler Center for Astro and Particle Physics
Universität Tübingen
Outline

- Motivation
 - Neutrinoless double beta decay
 - GERDA
- Cross section of $^{76}\text{Ge}(n,\gamma)$ reaction
- Prompt gamma ray spectrum
- Status of GERDA
- Summary
Double Beta Decay

Double beta decay ($2\nu\beta\beta$) occurs if single beta decay is energetically forbidden, but the transition of two neutrons into two protons (or $pp \rightarrow nn$) is allowed. The nucleus emits two electrons (positrons) and two anti-neutrinos (neutrinos).

$2\nu\beta\beta$ was observed in 11 isotopes: ^{48}Ca, ^{76}Ge, ^{82}Se, ^{96}Zr, ^{100}Mo, ^{116}Cd, ^{128}Te, ^{130}Te, ^{150}Nd, ^{238}U, ^{130}Ba ($\beta^+\beta^+$)
2νββ Decay

$\Delta L = 0$ no lepton number violation

$2e$, right-handed

ν_e, right-handed

$n \rightarrow p + e^- + W^- + W^-$

29.08.2008 Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen CGS13 Cologne
0νββ Decay

Conditions for 0ν2β:

\[\bar{\nu} = \nu \quad \text{Majorana particle} \]
\[\Delta L = 2 \quad \text{Lepton number violation} \]
\[P(\bar{\nu}_e, \text{left-handed}) \sim (m/E)^2 \text{ for } m_\nu > 0 \]

\[n \rightarrow \bar{\nu}_e, \text{left-handed} \rightarrow W^- \rightarrow e^- \]
\[n \rightarrow \nu_e, \text{right-handed} \rightarrow W^+ \rightarrow e^+ \]

\[t_{1/2} : 10^{19} - 10^{25} \text{ y} \]
\[t_{1/2} : > 10^{25} \text{ y} \]
What can we learn from $0\nu\beta\beta$?

If $0\nu\beta\beta$ is observed:

- Neutrino is a Majorana particle
- Neutrino mass
- Mass hierarchy (degenerate, inverted or normal)

\[
[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}(E_0, Z) \mid M^{0\nu} \mid^2 m_{ee}^2
\]

\[
m_{ee} = \left| \sum U_{ei}^2 m_i \right|
\]
Experiments

Past
- Heidelberg-Moscow (76Ge): limit $t_{1/2} > 1.19 \times 10^{25}$ y, claim for observation by a small group of the collaboration
- IGEX (76Ge): limit $t_{1/2} > 1.6 \times 10^{25}$ y

Present
- Courecino
- Nemo3

Future
- Coure
- Majorana
- SuperNemo
- Majorana
- GERDA
GERDA: The GERmanium Detector Array

Location: LNGS, Gran Sasso, Italy

Isotope: ^{76}Ge

$Q_{\beta\beta} = 2039\text{ keV}$

$t_{1/2} > 1.6 \times 10^{25}\text{ y}$

Source ↔ Detector enriched material (~87% ^{76}Ge)
GERDA: The GERmanium Detector Array

Shielding: LAr, no high Z-materials, water Cherenkov veto, 3400 m.w.e. of rock
Sensitivity

Background

Phase I: 10^{-2} cts/(keV kg y)
Phase II: 10^{-3} cts/(keV kg y)
Background

Radiopurity of:
- Germanium detector (Cosmogenic ^{68}Ge)
- Germanium detector (Cosmogenic ^{60}Co)
- Germanium detector (bulk)
- Germanium detector (surface)
- Cabling
- Copper holder
- Electronics
- Cryogenic liquid
- Infrastructure

Sources:
- Natural activity of rock
- Muons and neutrons
Background

Radiopurity of:
Germanium detector (Cosmogenic ^{68}Ge)
Germanium detector (Cosmogenic ^{60}Co)
Germanium detector (bulk)
Germanium detector (surface)
Cabling
Copper holder
Electronics
Cryogenic liquid
Infrastructure

Sources:
Natural activity of rock
Muons and neutrons
Neutron Capture by ^{76}Ge

$^{76}\text{Ge}(n,\gamma)\,^{77}\text{Ge}$

$\begin{array}{c}
\text{n} \\
\sim 0.1\text{eV} \\
^{77}\text{Ge}^m \\
^{77}\text{Ge} \\
^{77}\text{Ge}^+ \\
6072\text{ keV}
\end{array}$

$Q_\beta = 2703 \quad 690\text{ keV}$

Burson. Et.al. 1957
Neutron Capture in GERDA

⇒ 1 n-capture/(kg y) (MC simulation)

⇒ Possible background in the region of interest (2039 keV)

 Segemented detectors allow to distinguish single site events ⇔ multi site events
 ⇒ If prompt spectrum is known, chance to trigger a veto on the prompt gammas after neutron capture to reduce the background from beta decay of 77Gem

But: Only 15% of the energy weighted intensity known
PGAA @ FRM II

TALK on Monday by P. Kudejova
Prompt Gamma Activation Analysis

Samples of enriched Germanium were irradiated with cold neutrons at the FRM II (Munich)
\[\langle \lambda \rangle = 6.7 \text{ Å} \]
\[\Phi = 2 \times 10^9 \text{ n/(cm}^2 \text{s)} \]

Using the PGAA technology the

- cross section of \(^{76}\text{Ge}(n,\gamma)^{77}\text{Ge}^m\) and \(^{76}\text{Ge}(n,\gamma)^{77}\text{Ge}^m\)

- prompt gamma spectrum (single/coincidence)

were measured
Cross Section

76Ge target was activated and after irradiation the γ-radiation of the β-decay was measured by HPGe detectors.

![Decay spectrum of 77Ge](image)

The total cross section was calculated using the emission probabilities given in NUDAT.
Cross Section

Preliminary results:

<table>
<thead>
<tr>
<th></th>
<th>Our measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross section</td>
<td></td>
</tr>
<tr>
<td>[mbarn]</td>
<td></td>
</tr>
<tr>
<td>$\sigma(^{77}\text{Ge}^g \text{ direct})$</td>
<td>46.0 ± 5.0</td>
</tr>
<tr>
<td>$\sigma(^{77}\text{Ge}^g)$</td>
<td>64.3 ± 4.4</td>
</tr>
<tr>
<td>$\sigma(^{77}\text{Ge}^m)$</td>
<td></td>
</tr>
<tr>
<td>using IT</td>
<td>98 ± 12</td>
</tr>
<tr>
<td>using β-decay</td>
<td>112 ± 14</td>
</tr>
</tbody>
</table>

Graph showing cross section vs energy [keV].
Cross Section

Preliminary results:

<table>
<thead>
<tr>
<th></th>
<th>Our measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cross section</td>
</tr>
<tr>
<td></td>
<td>[mbarn]</td>
</tr>
<tr>
<td>$\sigma(^{77}\text{Ge}^9 \text{ direct})$</td>
<td>46.0 ± 5.0</td>
</tr>
<tr>
<td>$\sigma(^{77}\text{Ge}^9)$</td>
<td>64.3 ± 4.4</td>
</tr>
<tr>
<td>$\sigma(^{77}\text{Ge}^m)$</td>
<td>98 ± 12</td>
</tr>
<tr>
<td>using IT</td>
<td>112 ± 14</td>
</tr>
<tr>
<td>using β-decay</td>
<td>112 ± 14</td>
</tr>
</tbody>
</table>

![Graph showing cross section vs. energy](image)

Ge$^{78}(n,\gamma)$Ge$^{77m}

I.T. 54 sec \rightarrow β^-

Ge$^{76}(n,\gamma)$Ge77$\rightarrow$$\beta^-$$\rightarrow$As77$\rightarrow$Se77

I.T. 54 sec \rightarrow β^-

11.3 hr \rightarrow β^- 39 hr
Cross Section

Preliminary results:

<table>
<thead>
<tr>
<th></th>
<th>Our measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cross section [mbarn]</td>
</tr>
<tr>
<td>(\sigma(^{77}\text{Ge}^g \text{direct}))</td>
<td>46.0 ± 5.0</td>
</tr>
<tr>
<td>(\sigma(^{77}\text{Ge}^g))</td>
<td>64.3 ± 4.4</td>
</tr>
<tr>
<td>(\sigma(^{77}\text{Ge}^m)) using IT</td>
<td>98 ± 12</td>
</tr>
<tr>
<td></td>
<td>112 ± 14</td>
</tr>
</tbody>
</table>

Ng: relative data, normalised to NUDAT (A. Ng, Phys. Rev. 176, (1968), 1329)
Prompt Gamma Ray Spectrum

Single spectra
m ~ 300 mg
Irradiation time > 50 000 s

Coincidence spectra
m ~ 300 mg
Irradiation time 10 d
Status GERDA

- Phase I detectors ready
- Cryostat, water tank built
- „Superstructure“ under construction
- Moun veto to be installed in autumn
- Tests, commissioning spring 2009
- Start of measurement 2009
Summary

- GERDA is a new type of $0\nu\beta\beta$ Decay experiment with ^{76}Ge (bare Ge diodes in cryogenic liquid)

- Background reduction and rejection major task in GERDA

- With good knowledge of the prompt gamma ray spectrum a veto on the delayed beta decay of ^{77}Ge can be triggered

- Therefore the cross section and the prompt gamma spectrum of the ^{76}Ge(n,gamma)$^{77}\text{Ge}^{g,m}$ was measured