The GERDA Neutrinoless double beta decay experiment

Stefan Schönert, MPIK Heidelberg

Workshop on Precision Measurements at Low Energy
January 18th & 19th 2007
Paul Scherrer Institut, Villingen, Switzerland
Outline

• Introduction:
 • 0-νββ and physics implications
 • Effective Majorana neutrino mass $<m>$
 • Predictions on $<m>$ from oscillation experiments
 • Sensitivity with and w/o backgrounds

• GERDA design
 • Concept
 • Sensitivities: Phase I, II, III
 • Locations at LNGS
 • Phase I detectors
 • Phase II detectors
 • Front-end electronics
 • Infrastructures: cryogenic tank, WT, clean room,..
 • Screening

• Examples of backgrounds and reduction techniques:
 • Detector segmentation
 • Liquid argon scintillation read out

• Conclusion/Outlook
$2\nu - \beta\beta$ Decay

Observed in more than 10 isotopes
Life times $10^{18} - 10^{21}$ years
Mass parabolas

Ground states of even-even nuclei: 0^+
$0\nu-\beta\beta$ Decay

Not observed yet;
Life time limits $> 10^{24} – 10^{25}$ y;
Claim for evidence in Ge-76 by part of Heidelberg-Moscow Collab.

$0\nu\beta\beta$ can be generated by:
• exchange of light Majorana neutrinos
• SUSY
•

Schechter & Valle:
if $0\nu\beta\beta$ observed \Rightarrow ν is Majorana particle!
Physics motivations

1) Dirac vs. Majorana particle: (i.e. its own anti-particle)?

\[0\nu\beta\beta \Rightarrow \text{Majorana nature} \]

\[\text{Majorana} \Rightarrow \text{See-Saw mechanism} \]

\[m_\nu = \frac{m_D^2}{M_R} << m_D \]

For \(m_3 \sim (\Delta m_{\text{atm}}^2)^{1/2} \), \(m_D \sim m_t \) \(\Rightarrow \)
\[M_R \sim 10^{15}\text{GeV} \]

\[\text{Majorana} \Rightarrow \text{CP violation in } M_R \rightarrow \text{higgs} + \text{lepton} \Rightarrow \text{Leptogenesis} \Rightarrow \text{B asymmetry} \]

2) Absolute mass scale:

Hierarchy: degenerate, inverted or normal

(effective) neutrino mass

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
0ν-ββ Decay

\[(A, Z) \rightarrow (A, Z + 2) + e_1^- + e_2^-\]

Assume leading term is exchange of light Majorana neutrinos

\[T_{1/2} (0\nu)^{-1} = G \, M^2 \, m_{ee}^2\]

Phase space

Nuclear matrix element

Effective neutrino mass

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
Effective Majorana mass

\[m_{ee} = |\sum_i U_{ei}^2 m_i | \]

\(U_{ei} \) complex:
\(\Rightarrow \) sensitive to CP phases (optimist ☺)
\(\Rightarrow \) cancellation possible (pessimist)

NB: Beta-endpoint (Katrin)

\[m_{\nu_e} = (\sum_i |U_{ei}|^2 m_i^2)^{1/2} \]

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
If CP is conserved:

\[
\begin{align*}
 m_{\beta\beta} &= |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{2i\lambda_{21}} m_2 + |U_{e3}|^2 e^{2i(\lambda_{31} - \delta)} m_3 \\
 &= |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3
\end{align*}
\]
$m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{2i\lambda_{21}} m_2 + |U_{e3}|^2 e^{2i(\lambda_{31}-\delta)} m_3$

$= |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3$

$\not\Rightarrow$: Destructive interference possible
\[m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{2i\lambda_{21}} m_2 + |U_{e3}|^2 e^{2i(\lambda_{31}-\delta)} m_3 \]

\[= |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3 \]

Standard parametrization:

\[
\begin{pmatrix}
 c_{12}c_{13} & s_{12}c_{13} & s_{13} \\
 \ldots & \ldots & s_{23}c_{13}e^{i\delta} \\
 \ldots & \ldots & c_{23}c_{13}e^{i\delta}
\end{pmatrix}
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & e^{i\alpha_{21}/2} & 0 \\
 0 & 0 & e^{i\alpha_{31}/2}
\end{pmatrix}
\]
Experimental evidences for neutrino oscillations

- $\nu_e - \nu_{\mu,\tau}$; $\bar{\nu}_e - \bar{\nu}_x$
- Solar- and reactor-ν's:
 - $\Delta m^2_{\text{sol}} \approx 8 \cdot 10^{-5} \text{ eV}^2$
 - $\sin^2 2\theta_{12} \approx 0.8$
- Reactor-ν's:
 - $\nu_e - \nu_x$
 - $\sin^2 2\theta_{13} < 0.2$
- $\nu_{\mu} - \nu_{\tau}$
 - Atmospheric- and accelerator-ν's:
 - $\Delta m^2_{\text{atm}} \approx (2-4) \cdot 10^{-3} \text{ eV}^2$
 - $\sin^2 2\theta_{23} \approx 1$

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
Input for m_{ee} from ν-oscillations

Solar/Reactor-ν: θ_{12}, Δm^2_{sol}
Atmosph.-ν: Δm^2_{atm}
Reaktor-ν: θ_{13}

\[m_{ee} = \left| \cos^2 \theta_{13} (m_1 \cos^2 \theta_{12} + m_2 e^{2i\alpha} \sin^2 \theta_{12}) + m_3 e^{2i\beta} \sin^2 \theta_{13} \right| \]

\[\Rightarrow m_{ee} = f(m_1, \Delta m^2_{sol}, \Delta m^2_{atm}, \theta_{12}, \theta_{13}, \alpha, \beta) \]

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
Predictions from oscillation experiments

F. Feruglio, A. Strumia, F. Vissani, NPB 659

Negligible errors from oscillations; width due to CP phases

90% CL
Claim for evidence for $\beta\beta(0\nu)$

(subgroup of Heidelberg-Moscow Collaboration)

Heidelberg-Moscow data:
• Nov 1990 - May 2003
• 71.7 kg year
• Bgd 0.11 / (kg y keV)

• 28.75 ± 6.87 events (bgd:~60)
• 4.2 sigma evidence for $0\nu\beta\beta$

• 0.69-4.18 $\times 10^{25}$ y (3 sigma)
• Best fit 1.19 $\times 10^{25}$ y

• $m_{ee} = 0.24$-0.58 eV
• best fit 0.44 eV

NB. Statistical significance depends on background model!

Fig. 17. The total sum spectrum of all five detectors (in total 10.96 kg enriched in 76Ge), for the period November 1990 – May 2003 (71.7 kg year) in the range 2000–2060 keV and its fit (see Section 3.2).
Experimental sensitivity: w/o background

\[\tau = \frac{N_N}{N_S} \times T \]

 Experimental life time

- number of nuclides under control \(\propto M \)
- live time
- number of detected decays

Background free limit:
0 cnts in the analysis energy window \(\Rightarrow \) Poisson upper limit: \(N_P \)

Remember:
\[\left[T_{2}^{0v}(0^+ \rightarrow 0^+) \right]^{-1} = G^{0v}(E_0, Z) \left| M_{GT}^{0v} - \frac{g^2_{A}}{g^2_{V}} M_{F}^{0v} \right|^2 <m_v>^2 \]

\[\tau \geq \frac{N_N}{N_P} \times T \propto M \times T \Rightarrow <m> \leq \frac{\text{const}}{(M \times T)^{1/2}} \]
Sensitivity: with background

If no decay is observed in presence of \(N_B \) background events in an energy window \(\Delta E \):

\[
N_S < \left(N_B \right)^{1/2} \quad \Rightarrow \quad \tau > \frac{N_N T}{\left(N_B \right)^{1/2}}
\]

\[
N_B = b M T \Delta E \quad \text{b: background index} \ [1/(\text{kg} \cdot \text{year} \cdot \text{keV})]
\]

\[
\Rightarrow \quad \tau > \frac{N_N T}{\left(b M T \Delta E \right)^{1/2}} \propto \left(\frac{M T}{b \Delta E} \right)^{1/2}
\]

\[
\Rightarrow \quad <m> \leq \text{const.} \cdot \left(\frac{b \Delta E}{M T} \right)^{1/4}
\]
Comparison of DBD Isotopes

\[
T^{0\nu}_{1/2} = \frac{1}{\Gamma(Q_{\beta\beta}^5) \, M^2 \, \langle m_{ee}\rangle^2}
\]

\[
N_{\text{sig}} = N_{\text{Avg}} \cdot \frac{\text{mass} \cdot t}{A} \cdot \ln 2 \cdot \Gamma \cdot M^2 \cdot \langle m_{ee}\rangle^2
\]

<table>
<thead>
<tr>
<th>isotope</th>
<th>Q_{\beta\beta}</th>
<th>nat. abund.</th>
<th>rel. A</th>
<th>rel. \Gamma</th>
<th>rel. M^2</th>
<th>N_{\text{sig}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$</td>
<td>2039 keV</td>
<td>7.4%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.4</td>
</tr>
<tr>
<td>$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$</td>
<td>2995 keV</td>
<td>9.2%</td>
<td>0.93</td>
<td>4.4</td>
<td>0.71</td>
<td>7.0</td>
</tr>
<tr>
<td>$^{100}\text{Mo} \rightarrow ^{100}\text{Ru}$</td>
<td>3034 keV</td>
<td>9.6%</td>
<td>0.76</td>
<td>7.2</td>
<td>0.23</td>
<td>3.0</td>
</tr>
<tr>
<td>$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$</td>
<td>2529 keV</td>
<td>34%</td>
<td>0.58</td>
<td>6.9</td>
<td>0.33</td>
<td>3.2</td>
</tr>
<tr>
<td>$^{136}\text{Xe} \rightarrow ^{136}\text{Ba}$</td>
<td>2479 keV</td>
<td>8.9%</td>
<td>0.56</td>
<td>7.4</td>
<td>0.15</td>
<td>1.5</td>
</tr>
</tbody>
</table>

• **Introduction:**
 - $0\nu\beta\beta$ and physics implications
 - Effective Majorana neutrino mass $<m>$
 - Predictions on $<m>$ from oscillation experiments
 - Sensitivity with and w/o backgrounds
 - Claim of KK et al. (HdM Data)

• **GERDA design**
 - Concept
 - Sensitivities: Phase I, II, III
 - Locations at LNGS
 - Phase I detectors
 - Phase II detectors
 - Front-end electronics
 - Infrastructures: cryogenic tank, WT, clean room,..
 - Screening

• **Examples of backgrounds and reduction techniques:**
 - Muon veto
 - Detector segmentation
 - Liquid argon scintillation read out

• **Conclusion/Outlook**
Two new 76Ge Projects:

GERDA

- "Bare" enr Ge array in liquid argon (nitrogen)
- Shield: high-purity liquid Argon (N) / H$_2$O
- Phase I: ~18 kg (HdM/IGEX diodes)
- Phase II: add ~20 kg new enr. Detectors; total ~40 kg

- Array(s) of enr Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper / lead
- Staged approach based on 60 kg arrays (60/120/180 kg)

Majorana

Physics goals:
- degenerate mass range

Technology:
- study of bgds. and exp. techniques

List of institutions:

- INFN LNGS, Assergi, Italy
- JINR Dubna, Russia
- Institute for Reference Materials, Geel, Belgium
- MPIK, Heidelberg, Germany
- Univ. Köln, Germany
- Jagiellonian University, Krakow, Poland
- Univ. di Milano Bicocca e INFN. Milano, Italy
- INR, Moscow, Russia
- ITEP Physics, Moscow, Russia
- Kurchatov Institute, Moscow, Russia
- MPI Physik, München, Germany
- Univ. di Padova e INFN, Padova, Italy
- Univ. Tübingen, Germany

- ~80 physicists, 13 institutions, 5 countries
- approved Nov 2004 at LNGS
- Status: under construction

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
Phases and Physics reach of GERDA

required for ‘background free’ exp. with $\Delta E \sim 3.3$ keV (FWHM): $O(10^{-3})$ $O(10^{-4})$ counts/(kg·y·keV)

Background requirement for GERDA:

\Rightarrow Background reduction by factor $10^2 - 10^3$ required w.r. to precursor exps.

\Rightarrow Degenerate mass scale $O(10^2 \text{ kg·y})$ \Rightarrow Inverted mass scale $O(10^3 \text{ kg·y})$
Phases and Physics reach of GERDA

Phase I:
Phase II:
Phase III:

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
GERDA at LNGS

GERDA location: hall A of LNGS
GERDA design

- Clean room lock
- Water tank / buffer / muon veto
- Cryogenic vessel
- Liquid argon
- Ge Array
GERDA underground facilities at LNGS
Main Experimental Site

June '06

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
Cryostat

- Vacuum insulated stainless steel cryostat with internal Cu liner (stainless steel factor ~100 more radioactive (238U, 232Th) than Cu)

- Ø outer × height 4200 × 8900 [mm × mm]

- Inner vessel volume 70 [m3]

- Empty vessel 25,000 [kg]

- Max. load inner vessel:
 - LAr 98,000 [kg]
 - Cu shield 20,000 [kg]
Infrastructure on Top of Platform

Clean room with lock on platform

Lock with tubes for cables

Rail system to lower position and lower individual strings
Phase I Detectors: Maintenance and Measurements in Underground detector laboratory (LArGe facility)

Since Nov. 2005: 17.9 kg of enriched Ge-detectors underground at LNGS; Characterization completed
Phase I Detectors:
Prototype tests of (natural) low-mass detector assembly in liquid nitrogen

Enriched detectors are currently re-processed and prepared for testing
Phase II Detectors: Procurement of enriched Ge

- Enrichment of 37.5 kg Ge-76 completed in Sep. 05
- Transportation of Material to Europe by truck in spring for further processing
- Specially designed protective steel container reduces activation by cosmic rays by factor 20

Test transportation March 05
Phase II Detectors:
“True-coaxial” natural detectors

- 6-fold-φ segmented p-type
- 18-fold (6-φ; 3-z) segmented n-type

60Co
Core signal: 2 keV FWHM

One segment signal: 3.5 keV FWHM
Backgrounds in GERDA

<table>
<thead>
<tr>
<th>Source</th>
<th>B [10^{-3} cts/(keV kg y)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. γ from 208Tl (232Th)</td>
<td><1</td>
</tr>
<tr>
<td>Ext. neutrons</td>
<td><0.05</td>
</tr>
<tr>
<td>Ext. muons (veto)</td>
<td><0.03</td>
</tr>
<tr>
<td>Int. 68Ge ($t_{1/2} = 270$ d)</td>
<td>12</td>
</tr>
<tr>
<td>Int. 60Co ($t_{1/2} = 5.27$ y)</td>
<td>2.5</td>
</tr>
<tr>
<td>222Rn in LN/LAr</td>
<td><0.2</td>
</tr>
<tr>
<td>208Tl, 238U in holder</td>
<td><1</td>
</tr>
<tr>
<td>Surface contam.</td>
<td><0.6</td>
</tr>
</tbody>
</table>

Muon veto

180 days exposure after enrichment + 180 days underground storage

30 days exposure after crystal growing

derived from measurements and MC simulations

Target for phase II:

$\Sigma B \leq 10^{-3}$ cts/(keV kg y)

\Rightarrow additional bgd. reduction techniques
Background reduction techniques

- Muon veto
- Anti-coincidence between detectors
- Segmentation of readout (Phase II)
- Pulse shape analysis (Phase I+II)
- Coincidence in decay chain
- Scintillation light detection
Background reduction techniques

- Muon veto
- Anti-coincidence between detectors
- Segmentation of readout electrodes (Phase II)
- Pulse shape analysis (Phase I+II)
- Coincidence in decay chain (Ge-68)
- Scintillation light detection (LArGe)
Example: Internal 60Co

\[\begin{align*}
\beta: & \quad E_{\text{max}} = 318 \text{ keV} \\
\gamma_1: & \quad 1.173 \text{ MeV} \\
\gamma_2: & \quad 1.332 \text{ MeV}
\end{align*} \]
Example of background topology

Energy deposition in surrounding medium

Multi-site energy deposition inside HP-Ge diode

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
60Co background spectrum

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
60Co: suppression by segmentation

MC simulation

counts/keV

energy (MeV)

$Q_{\beta\beta}$
60Co: suppression by segmentation

MC simulation

$N_{\text{hit}} = 3$

$N_{\text{seg}} = 1$

~ 10 (7 seg.)

Illustration: Simple 7-fold segmentation
MaGe: 60Co suppression by segmentation and anti-coincidence

Number of crystals

- Probability per decay to deposit energy within $Q_{\beta\beta}$
- ROI per 1 keV energy bin after combined cuts: (18-fold segm.)
 - $P = 4.7 \times 10^{-6}$/keV
 - (factor ~35 reduction w/r to single unseg. detector)

Number of segments

- $N_{\text{crystals}} = 1$
- $N_{\text{segments}} = 1$

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
Phase II detectors
1.6 kg 18-fold segmented true-coaxial n-type

Goal:
• Study of γ identification and suppression factors at $Q_{\beta\beta}$: 2 - 100 depending on source location
Th suppression by LAr Ge-anticoinc: (20 cm diameter prototype setup)

1 ton liquid argon detector under construction

Suppression limited by size of Dewar (20 cm Ø)

Compton continuum RoI: 95 % suppr. by LAr veto
$^{60}\text{Co}: \text{segmentation and LAr Ge-anticoinc}$

MC simulation

\[N_{\text{seg}} = 1 \]

AND

LAr anticoinc

~ 1000
Off-spin of GERDA LAr R&D for DM search
Pulse shape discrimination studies

Data with AmBe n/γ source

Liquid Argon for DM Search (WARP, ArDM, CLEAN)

Discrimination of Ar-39 background?

20 kg active LAr target

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007
Summary & Outlook

• GERDA: probe Majorana nature of neutrino with sensitivity down to inverse mass hierarchy scale

 phase I: background 0.01 cts/\,(kg\cdot\text{keV}\cdot y)
 ▶ scrutinize KKDC result within 1 year

 phase II: background 0.001 cts/\,(kg\cdot\text{keV}\cdot y)
 ▶ $T_{1/2} > 2 \cdot 10^{26} \text{ y}$, $<m_{ee}> < 0.09 – 0.29 \text{ eV}$

 phase III: world wide collaboration
 ▶ $T_{1/2} > 10^{28} \text{ y}$, $<m_{ee}> \sim 10 \text{ meV}$

• 2007: Experimental installations (Cryotank, water tank, building etc.)
• 2008: target for detector readiness
GERDA collaboration