Search for the neutrinoless ββ decay in 76Ge with the GERDA experiment
C. Cattadori, M. Knapp, K. Kroeningen, X. Liu, L. Pandola, A. Pullia, C. Tomei, C. Ur, F. Zocca for the GERDA collaboration

The Gerda Ovββ experiment

Neutrinoless ββ decay: \((A,Z) \rightarrow (A,Z+2) + 2e^-\)

Forbidden in the Standard Model: violates two units of the lepton number conservation

Process signature:

- SM-allowed 2p process
- Sum of the electron kinetic energies

Experimental sensitivity:

\[T_{1/2} = 4.3 \times 10^{33} \text{ yr} \]

90% CL

The GERMANium Detector Array experiment (GERDA) will look for Ovββ decay in \(^{76}\text{Ge}\) using HP-Ge detectors enriched in \(^{76}\text{Ge}\) at the Gran Sasso underground laboratory (Italy)

GERDA concept

- Idea to reduce the background down to \(10^{-3} \text{ counts/keV kg y}\)
- shield against external γ operating ike \(6\) crystals suspended in high radioactivity liquid nitrogen or argon (also cooling medium)
- same concept of Genius and GEM

Design: graced shielding. Inner liquid N/Ar shielding + external water buffer.

Water: additional γ shielding, neutron shielding, Cerenkov muon veto

No high-Z material surrounding the detectors

Background from external γ rays can be reduced below \(10^{-3} \text{ counts/keV kg y}\)

Additional background reduction from material selection (especially for parts close to detectors), detector anti-coincidence and segmentation, pulse shape analysis (Ovββ = localized energy deposition)

Phase I detectors

- Eight enriched detectors (< 18 kg) from the former HM and IGEX experiments have been underground for more than ten years
- Internal cosmogenic background reduced. A procedure for the removal of their current crystal, re-contacting and mounting inside LN bath while keeping their radiopurity quality has been developed

Phase I Detectors

- Array
- Using Ge-Ge coincidences to suppress bg signal
- Only 50 g of selected clean material around each detector (conventional Ge crystals = 3-4 kg)

Phase II detectors

Custom-made detectors: true-coaxial n-type prototype

- Already procured 37 kg of Ge enriched at 86% in \(^{76}\text{Ge}\) (Krasnaysk, Russia) for the production of the new crystals
- Material stored underground to prevent cosmonergic activation

- Designed a suspension system such that a minimum of material is used under test
- Crystals will be segmented (e.g. 18-fold, 6-fold in the azimuth angle \(\phi\), 3-fold in the height \(z\)) each segment read out separately
- Detectors placed in hexagonal pattern in strings of three detectors each

Cerenkov muon veto

- The water tank is operated as a Cerenkov muon veto, to reduce the background induced by cosmic ray muons
- The water tank is covered with VM2000™ light-reflecting foil
- 80-100 8” PMTs mounted on the walls of the water tank. The walls of the crystal and of the water tank are covered with VM2000™ light-reflecting foil

Front-end electronics

- To reduce background minimize mass of component close to detector, integration is ongoing
- Two ASIC CMOS circuits under development and test
- 0.8 μV 5V CMOS single or differential ended preamp with external input stage (CFET) or integrated input FET, external feedback components

ASIC CMOS preamplifier in LN bath

Tested circuit structure: external BR62 JFET + 0.8 μV 5V CMOS single-ended preamplifier

Digital DAQ system

- pulse shape analysis to reduce the background produced by multi-site events
- digital filters can improve detector response when signals are affected by microphonic or high ripple
- detector test and characterization
- building of pulse shape databases for the PFA algorithm

Results with a low-noise planar Ge detector

- HP-Ge detectors
- Eight enriched detectors (= 18 kg) from the former HDX and IGEX experiments have been reduced
- Results with a low-noise planar Ge detector
- Detectors placed in strings of \(i=1,2,3\) detectors
- F = 0.05 μV, FWHM = 2.7 keV
- FWHM@1332keV = 2.7 keV
- Total power consumption: ~ 25 mW
- The Gerda Ovββ decay: \((A,Z) \rightarrow (A,Z+2) + 2e^-\)
- Claim for the observation of Ovββ decay in \(^{76}\text{Ge}\) based on the detection of the Helidelberg-Moscow (HM) experiment at Gran Sasso

\[T_{1/2} = 0.69 \times 10^{35} \text{ yr} \]

No positive indication from the IGEX experiment

- 8.8 kg y, \(B = 0.2 \text{ c/keV kg y}\)

GERDA background for GERDA: 10^{-2} counts/keV kg y

- 100 kg exposure background-free

Phased approach:

- Phase I: existing detectors from HM and IGEX, establish background reduction
- Phase II: new detectors