Operation of a prototype detector for GERDA

Marik Barnabé Heider*, Oleg Chkvorets*, Konstantin Gusev*, Stefan Schönert**
* Max-Planck-Institut für Kernphysik Heidelberg, "KIAE Moscow and JINR Dubna

GERmanium Detector Array for the search of neutrinoless ββ decays of 76Ge

• Neutrino: Majorana particle?
• (A,Z) → (A,Z+2)+e+ + e−
 (e/ spectrum measured)
• Sensitivity
 - Isotope mass (M)
 - Running time (T)
 - Background (B)
 - Internal (Co(<10−6)/kg y) + External (228Th(<10−6)/kg y)

PHASE I

• Enriched 86% Ge (17.9 kg)
 - Heidelberg-Moscow (5) and IGEX (3) detectors
• 1 year data taking (FWHM=3.6 keV, c=95%) = 0.55 ct
 - No event: T0 = 3.0 × 10^8 y, m<0.24 = 0.77 eV
 - Event: T0 = 2.21 × 10^8 y, m<0.28 = 0.9 eV

Testing of the prototype detector assembly in liquid nitrogen

• Non enriched HP-Ge p-type diode refurbished at CANBERRA
 - Mechanical machining of a new groove
 - New lithium diffusion up to the groove
 - New boro inner contact implantation
 - Evaporation of a new passivation layer
 - 2.2 keV FWHM at 1.332 MeV
 (in a standard test cryostat)
• Testing sequency
 - Crystal mounted in the detector holder with HV and signal contacts
 - HV to signal resistance measurement at room temperature
 - Cooling down in LN. Up, in a standard cryostat at LNGS
 - Forward resistivity measurement: a source produces a current of 1 mA and the voltage drop is measured.
 - Test point of the preamplifier and noise level recorded as the HV is increased
 - Current source (1 mA)
 - Testing tool
 - Signal to HV resistivity (0.50-Ω)
 - Forward resistivity (few kΩ)
 - Leakage current
 - Noise
 - Energy spectrum with 60Co

Testing at CANBERRA SEMICONDUCTOR, Olen, Belgium
(in collaboration with technical staff)

• Goal: spectroscopic performance of the prototype detector assembly
• Operations
 - 14 bit/105 MHz FADC
 - Facility
 - Chemical fume hood
 - DI water supply
 - High purity chemicals
 - Clean bench
 - Cryogenic test stand (dewars flushed and filled with HP liquid nitrogen)
 - Vacuum transport and storage conditions in stainless steel, electropolished surface and satin Coating
• Resolution achieved: 2.7 keV FWHM at 1.332 MeV
• Summary: Testing of the prototype detector assembly in the radon-free test bench of the LArGe facility, LNGS

Testing in the radon-free test bench of the LArGe facility, LNGS

• Facility
 - Cryostat
 - Detector support conduction
 - Operations
 - Resolution achieved: 2.7 keV FWHM at 1.332 MeV
• Summary: Testing of the prototype detector assembly in the radon-free test bench of the LArGe facility, LNGS

Summary

• GERDA Phase I low-mass detector support and contact designs are very robust and give excellent spectroscopic performance

On going activities with enriched crystals

• Opening of Heidelberg-Moscow and IGEX detectors
• Dimensions measurement, testing and refurbishment
• Background performance in the shielded liquid argon facility (LARGE)

See GERDA – a Search for Neutrinoless Double Beta Decay, K. Kröninger and Efficiency determination of Ge-detectors by using Monte Carlo Simulations, D.Budjas

* Max-Planck-Institut für Kernphysik

ISAPP, München 2006

GERDA will be situated in Hall A at LNGS. The Ge crystals will be operated in UNLAg inside vacuum-insulated cryostat.

Cooling down in LN. Up, in a standard cryostat at LNGS.

Forward resistivity measurement: a source produces a current of 1 mA and the voltage drop is measured.

Testing tool
• Signal to HV resistivity (0.50-Ω)
• Forward resistivity (few kΩ)
• Leakage current
• Noise
• Energy spectrum with 60Co

On going activities with enriched crystals

• Opening of Heidelberg-Moscow and IGEX detectors
• Dimensions measurement, testing and refurbishment
• Background performance in the shielded liquid argon facility (LARGE)