TG10 Status Report

L. Pandola

INFN, Laboratori Nazionali del Gran Sasso

for the TG10 Task Group

Gerda Collaboration Meeting, Padova March 11th-13th, 2009

Outlook of TG10 activities

The <u>main activities</u> currently carried on by the TG10 group are:

Monte Carlo Campaign 2 (MCC2) [LNGS, MPPMU, Tübingen, Zürich] for the estimate of a realistic background spectrum for GERDA. Simulations are based on MaGe.

Major effort within TG10.

> Dedicated simulations [LNGS, Tübingen, INR] for specific background sources (e.g. 222 Rn emanation in the cryostat, Cherenkov μ veto, external γ -rays), also in coordination with other TGs.

Pulse shape simulation [MPPMU], including comparison with experimental data with Munich prototypes.

Reminder of MCC2

- Get expectation of full energy spectrum of both phases of GERDA
- Array set up, crystals:
 - 6 × GTF (natural Ge)
 - $-5 \times ANG + 3 \times RG$ (enr. Ge)
 - 14 x segmented (enr. Ge) [Phase II]

- Various physics processes contributing to the energy spectrum are simulated using MaGe (Geant4)
- Main contributions of energy depositions in Crystals:
 - Contamination of materials
 - Neutrons-induced
 - Muon-induced

From MaGe n-tuples to energy spectrum

<u>Many contributions</u> have to be considered: - each volume (cable,holder,screw,etc) has its own set of background sources

- some volumes may be grouped, but still: very long list of contributions

For each elementary contribution:

- ntuple of deposited energies produced by MaGe

- apply smearing to each energy deposition

 create standard histograms normalized per primary particle

<u>Obtain individual contribution to energy</u> <u>spectrum by rescaling of normalized histogram</u> - needs parameters, e.g. start/end date of data taking, crystal masses, isotope fractions, contaminations, etc

<u>Framework for clear book-keeping</u> necessary: -one common parameter set for all histograms -better overview to list of all contributions

Features of the framework

- Two input files parameters.txt and BGList.xml define the resulting energy spectrum
- simple editing of the two input files to play around with contributions and parameter values (e.g. change contamination of one item)
- Example: Contributions from Holders (Phase II)

Includes:

kg_{Er} 2vDBD and OvDBD in 28 crystals $(T_{1/2} = 1.74 \cdot 10^{21} \text{ and } 1.2 \cdot 10^{25} \text{ y})$ 10 10^{-1} ke All copper parts of all 28 holders. 10⁻³ Upper Limits for ²³²Th, ²³⁸U, ⁴⁰K, ⁶⁰Co counts 10⁻⁴ All teflon parts of all 28 holders. 10⁻⁵ Central Values for ²³²Th, 0.5 ²³⁸U, ⁴⁰K (if positive identification!)

Features of the framework Example: Contribution from Matrix (Phase II):

The 28 detectors are held in 10 strings

On top of each string: Cables, contact pins, PreAmps, etc.

DBD in 28 crystals

All materials:

copper, commercial copper screws, teflon, iglidur, murtfeldt contact pins (Pogo pins) with ²³²Th, ²³⁸U, ⁴⁰K, ⁶⁰Co contamination values

upper limits

central values (for isotopes with **positive detection**!)

Coordination with TG3 & TG11

PCBs to be used for Phase I are under definition and optimization → also material screening ongoing

Monte Carlo simulations (Phase I array in MCC2, 5 strings) to determine the maximum tolerable activity and/or the minimum distance to the crystal array.

8 enrGe crystals + 6 GTF crystals (anti-coincidence only)

For boards placed 30 cm above the uppermost crystal in each string and 0.5 mBq/piece in ²³²Th

→ 1.2·10⁻³ cts/(keV·kg·y) at Q_{ββ} (can be reduced by ~25% by crystal anticoincidence)

Recent measurements of the ²²²Rn cryostat emanation, ~30 mBq, triggered a new Monte Carlo campaign for the background estimate → simulated the effect of ²²²Rn daughters (²¹⁴Bi and ²¹⁴Pb) for the Phase I and Phase II arrays

MCC2 assumptions for <u>threshold</u> (10 keV core & segments), <u>dead layer</u> (0.8 mm for existing p-type detectors and negligible for n-type) and <u>energy</u> <u>resolution</u>: 2.5 keV FWHM at 1333 keV line.

Phase II array [uniform ²²²Rn distribution]:

Phase I array [uniform ²²²Rn distribution]:

effect of the anti-coincidence is negligible (15% at $Q_{\beta\beta}$)

Uniform ²²²Rn distribution in LAr is **not** a realistic assumption → convection concentrates ²²²Rn close to detectors

Expected background for 30 mBq ²²²Rn <u>uniformly</u> in LAr: <u>PhaseI</u> \rightarrow 4.0·10⁻⁴ cts/(keV·kg·y) (no cut), <u>3.5·10⁻⁴ cts/(keV·kg·y)</u> (anti-coincidence) <u>Phase II</u> \rightarrow 3.0·10⁻⁴ cts/(keV·kg·y) (no cut), <u>1.4·10⁻⁴ cts/(keV·kg·y)</u> (segment anti-coincidence)

Study to evaluate the effect of ²²²Rn close to the detectors → define the possibility to have a cylindrical shroud surrounding the crystals (GSTR-09-001). Simulations for Phase I.

Convection concentrates ²²²Rn in a cylinder of radius ~tens of cm centered in the array. Notice: if 30 mBq were concentrated in a sphere of r = 1 m around the crystal array → 5.0·10⁻³ cts/(keV·kg·y)

definitely too large!

With the proposed shroud (30 μ m Cu), ²²²Rn would be re-directed within a cylindrical shell of inner radius ~40 cm and outer radius ~60 cm \rightarrow decays > 40 cm from the crystals

Simulated ²¹⁴Bi decays in a cylinder shell having radii 40 and 60 cm, and height ±1 m with respect to the crystal array (decays > 1 m do not contribute)

Assuming h=6 m for the convection layer \rightarrow background at $Q_{\beta\beta} = 1.4 \cdot 10^{-4} \text{ cts/(keV \cdot kg \cdot y)}$ for 30 mBq of ²²²Rn \rightarrow acceptable!

One also has to check for the background possibly induced by the Cu shroud because of ²⁰⁸Tl contamination: for 20 µBq/kg in ²³²Th contribution is 3·10⁻⁵ cts/(keV·kg·y) → OK

Muon veto simulations

Efficiency: 99.56% with 4-fold FADC coincidence (30 ns)

Calculation of γ -ray background

Recalculated γ -ray background from stainless steel cryostat and external γ -rays (with the full geometry, including Cu layer) using the **home-made** fast simulation code developed by INR \rightarrow cross check of results that will be obtained also with MaGe-MCC2

Simulated 2.6-MeV γ -rays from $^{208}{\rm Tl.}$ Assumed ... Bq/kg in $^{232}{\rm Th}$ from the cryostat stainless steel

Phase I array (9 crystals), LAr filling, anti-coincidence

cryostat: <u>1.2·10⁻⁵</u> cts/(keV·kg·y) ± 20%

external: 7.7·10⁻⁶ cts/(keV·kg·y) ± 40%

Background mainly comes from sides (cylindrical part) and from the bottom

Validation of pulse shape simulation

Available a tool for pulse shape simulation (Munich) → C++ based and fully interfaced with MaGe

Fit of a simulated pulse on a real one

3 free parameters in the fit: amplitude, time scale, time offset

Results are in good agreement. To have better clue (especially on fine structures): average real pulses to cancel the effect of noise

Fit simulated pulses to averaged pulses

Red: simulated

Black: data

Bad χ^2 of the fit especially close to the segment boundaries \rightarrow need to understand and refine the model for simulation (impurity effects?)

Conclusions

The **activity** of the Monte Carlo Working Group on simulations and background studies continues regularly

The main effort at the moment is the Monte Carlo Campaign 2 (MCC2), aiming to estimate a realistic background spectrum from GERDA → prepare machinery and tools for combining parameters and simulations in a consistent way (a lot of work!)

Other Monte Carlo studies are ongoing on dedicated issues (also with other codes than MaGe): ²²²Rn emanation, μ veto, γ -rays from cryostat and walls

Activity for the development and validation of pulse shape simulation is going on. It is interfaced to with MaGe, to have the full simulation chain