

MAJORANA An Ultra-Low Background Enriched-Germanium Detector Array for Fundamental Physics Measurements

Jason Detwiler Lawrence Berkeley National Laboratory

GERDA Collaboration Meeting March 2009 Padova, Italy

OAK RIDGE NATIONAL LABORATORY

THE UNIVERSITY OF CHICAGO SOUTH AROLINA.

Pacific Northwest National Laboratory

MAJORANA Collaboration Goals

Actively pursuing R&D aimed at a ton-scale 76 Ge $0\nu\beta\beta$ -decay experiment

- Technical Goal: Demonstrate background low enough to justify building a ton-scale experiment
- Science Goal: Build a prototype module to test the recent claim of an observation of $0\nu\beta\beta$
- Work cooperatively with the GERDA Collaboration to prepare for a single international ton-scale Ge experiment that combines the best technical features of MAJORANA and GERDA
- Pursue longer term R&D to minimize costs and optimize the schedule for a ton-scale experiment

The MAJORANA DEMONSTRATOR

- 60-kg of Ge detectors required for sensitivity to background goal: I c/ROI/t/y
- 30-kg of 86% enriched ⁷⁶Ge crystals required for science goal: test HDKK claim
- Examine detector technology options: pand n-type, segmentation, point-contact
- Low-background cryostats & shield: ultraclean, electroformed Cu
- Initial module will have 3 cryostats
- Compact low-background passive Cu and Pb shield with active muon veto
- Located underground 4850' level at Sanford Lab / DUSEL.

DEMONSTRATOR Sensitivity

Recent Baseline Updates

- Concentrate on PPC Detectors.
 Advantages of cost and simplicity, with no loss of physics reach.
 Will continue NSC R&D utilizing SEGA crystal.
- Considering additional physics one can do with lowenergy-threshold PPC detectors.
 Exploits low-energy sensitivity (~100 eV threshold) of PPC detectors.
- In joint partnership with agencies and institutions, plan early implementation of natural-Ge PPC sub-module.

Point Contact Detectors

Hole v_{drift} (mm/ns) w/ paths, isochrones

30

20

50

40

900 ns

600 ns

300ns

20

10

0

-10

-20

0

10

Radius (mm)

Z (mm) Barbeau et al., JCAP 09 (2007) 009; Luke et al., IEEE trans. Nucl. Sci. 36 , 926(1989).

Point Contact Detectors

C. E. Aalseth et al., Phys. Rev. Let. 101, 251301 (2008); Z. Ahmed et al., arXiv:0902.4693 [hep-ex]

Mass [keV/c²]

Point Contact Detectors

Detectors in hand:

Owner	Dimensions	Mass	Resolution (1.33 MeV)	Manfacturer
U. Chicago	50 mm 🛇 x 44 mm	460 g	1.82 keV	Canberra
PNNL	50 mm 🛇 x 50 mm	527 g	2.15 keV	Canberra
LBNL	62 mm 🛇 x 44 mm	800 g	2.11 keV	LBNL
LANL	72 mm 🛇 x 37 mm	800 g	2.15 keV	PHD's
ORNL	62 mm 🛇 x 46 mm	740 g	4. – 4.5 keV	PHD's

Further planned PPCs for R&D

- ORTEC PPC prototype: >500 g
- Canberra BEGe for low-BG low-E studies
- Inverted-coax PPC \longrightarrow
- Mini-PPCs for surface preparation studies

Incomplete Charge Collection

- ⁵⁷Co scan shows rapidly dropping efficiency near the detector back
- Consistent with drift trajectories being "blocked" by ditches

Incomplete Charge Collection

- ⁵⁷Co scan shows rapidly dropping efficiency near the detector back
- Consistent with drift trajectories being "blocked" by ditches

Hole Drift on Open Surface

- Kinked slow-roll pulses consistent with charged open surface with slower hole mobility
- Can convert the waveform to radius via weighting potential
- Under investigation

Surface Passivation R&D

- Mini-PPCs in T-variable cryostat
- Surface passivation that didn't work for SPPC works for mini PPC
- Spectral variations consistent with charge trapping on passivated surface
- Investigate as a function of passivation recipe

First Module

- 18 natural-Ge Canberra BEGe's on order
 - Ø = 70±2.5 mm, h = 30±2.5 mm
 - 579 g active mass
 - contact r < 6.5 mm (5 mm nom.)
 - Front surface metalized for HV
- 4 to 6 crystals per string
- Front-ends mounted next to the crystal
- Closed cold plate and beefier Cu in detector mounts for added strength

Detector Mounts

- Single detector units that attach to form strings
- HV on outer contact
- Mostly EFCu with minimal amount of plastics
- Front ends integrated into contact pin; encapsulate in EFCu for α, β shielding
- Currently iterating design and prototyping

Detector Readout

- Parallel development of resistive feedback (LANL) and pulse reset (UW) designs: trade off between noise and thermal / radioactivity challenges
- Integrated detector contact pin: currently under design
- Investigating multiple cable options: "pico"-coax, CuFlonbased flex cables, PEN flex cables, twisted pairs of parylene-coated extruded EFCu
- Cable connection options: wire bond, dimpled pressure connection, conducting adhesive, e-beam welding

Front Ends: Resistive Feedback

16

- Trace proximity provides
 ~I pF capacitance
- Silica or sapphire substrate provides thermal control
- Amorphous Ge resistor: deposit in H environment gives proper R at low T
- MX-120 FET
- Possibility to add decoupling C inside feedback loop (substrate stands off HV)

Front Ends: Resistive Feedback

17

100 2/26/09 LMFE board thermal test Heater: 1.24 kohm resistor (0402) T calculated from resistance of a-Ge resistor 80 60 40 20 80 100 120 140 160 180 200 Temperature (K)

Power (mW)

- Trace proximity provides
 ~I pF capacitance
- Silica or sapphire substrate provides thermal control
- Amorphous Ge resistor: deposit in H environment gives proper R at low T

bottom

top

CF

Cc

- MX-120 FET
- Possibility to add decoupling C inside feedback loop (substrate stands off HV)

Front Ends: Resistive Feedback

18

- Trace proximity provides
 ~I pF capacitance
- Silica or sapphire substrate provides thermal control
- Amorphous Ge resistor: deposit in H environment gives proper R at low T
- MX-120 FET
- Possibility to add decoupling C inside feedback loop (substrate stands off HV)

Front Ends: Pulsed Reset

COGENT front ends

- Front-end and first stage "hybrid" design: close the loop near the detector
- Power dissipation and radioactivity levels may be challenging
- Currently prototyping

Site Facilities

- Current layout: EFCu and detector facilities in one campus at 4850' level in new drift to Davis cavity (LUX)
- Water removal proceeding faster than anticipated; may get to go UG at June collaboration meeting at Sanford Lab
- Beneficial occupancy by year's end

MEP / TRANSITION / MAJORANA

Simulations and Analysis

- Design simulations
 - Internal front-ends
 - Increased internal Cu
 - ⁴⁰K in plastics
 - Backgrounds from new structural components
- Background Simulation Campaign: Spring 2009
 - DEMONSTRATOR geometry
 - Full-spectrum background model
- Low-E modeling and verification
- DAQ / event building / analysis software under active development

Materials Purity

- 2009 campaign to further reduce limits on backgrounds in EFCu (previous best: ~0.7 µBq/kg, addressing bath purity)
- Procuring enough "EXO" plastic for detector supports, with NAA to follow
- Staged Pb procurement with ICPMS program for shield
- Cables and electronics materials screening

Other First Module Preparations

- Detector acceptance / characterization lab
- Designing tools, jigs, glove boxes for detector / string / cryostat assembly
- Thermal / mechanical / electrical testing in Canary Cage
- Construction procedure document drafts
- Preparing to procure GRETINA 10ch 100 MHz digitizers; extensive test stand usage and debugging well underway

Canary Cage

Enriched Germanium

- UMICORE not interested in processing enriched Ge
- Fully costed plan to establish a small processing facility in Oak Ridge
- USD received SD funding for a UG crystal pulling lab
- Continue to monitor alternative enrichment methods, but not much promise at this point

SEGA

- 4x2 segmented n-type ^{enr}Ge detector
- Currently electroforming detector mount components
- Install in WIPP this Spring, Summer

Other R&D

- Neutron interaction simulations
- Cross-beam characterization
- Rn deposition on crystal surfaces

single

- Surface alpha background characterization
- Spectral shape as a function of source position (see arxiv:0902.4370)

DEMONSTRATOR Schedule

S4 Proposal Status

- Requested funding for
 - Design of UG facilities and potential MJ-like aspects of design (cryostats, shields)
 - Ge detector production / acquisition issues
 - MJ-GERDA down-select studies in the later years
 - Project planning
- Submitted Jan 2009
- Response / funding scheduled for Summer 2009

Summary

- Primary focus is on first module, 18 BEGe's
- Much design work and prototyping in progress.
- Final detector mount / cryostat design and readout down-select for first module in the summer
- Homestake preparations are proceeding rapidly, hope to begin installation late 2009
- Next collaboration meeting: June 2-4 at Sanford Lab in South Dakota