The Rn emanation and the shroud

B. SchwingenheuerMPI-K Heidelberg11 March 2009, Padova

GERDA Scientific / Technical Report: GSTR-09-001

Background from radon emanation of the GERDA cryostat

L. Pandola (LNGS), K.T. Knöpfle (MPIK), S. Schönert (MPIK), B. Schwingenheuer (MPIK)

Cryostat Rn emanation measurements with MOREX (in mBq)

		29.8±2.4±5.8	
after 2 nd cleaning	March 08 1	13.6±0.7±2.7 3.7±0.7±2.7	

after copper mount June 08 33.0±2.8±7.0 $35.7 \pm 2.9 \pm 8.8$

Dec 08 33.2±3.5±1.9

 $31.3 \pm 4.6 \pm 3.4$

27.3±2.4±0.7

after 3rd cleaning

after 1st cleaning

GSTR 07-20: For uniform ²²²Rn distribution of 8 mBq bkg = 10^{-4} cts/(keV kg y) for phase I \rightarrow current Rn emanation factor 2-3 above the limit

Proposal: copper shroud to keep Rn away from crystal array

1600 mm

²¹⁴Bi spectrum in ^{enr}Ge diodes

bkg index = $1,4 \times 10^{-4}$ cnts/(keV kg y) without anti-coincidences 1.1×10^{-4} cnts/(keV kg y) with detector anti-coincidences

bkg from ²³²Th of copper foil (20 μ Bq/kg) = 0.17 x 10⁻⁴ cnts/(keV kg y) (Rn emanation of foil will be measured in HD)

without shroud: factor ~10 larger bkg index \rightarrow not acceptable even for 8 mBq em.

Conclusion

- cleaning in November did not (significantly) reduce Rn emanation
- due to convection Rn will be transported from wall/copper to crystal array \rightarrow non-homogeneous concentration
- the shroud will keep a minimal distance between Rn and diodes
- due to different cooling temperatures of upper and lower heat exchangers no/little mixing of LAr from neck and cryostat
 → shroud design ok?
- simulation \rightarrow expect a background index ~ 1.5 x 10⁻⁴ cnts/(keV kg y) (if copper foil has low ²³²Th concentration and little Rn emanation)