STATUS OF THE CALIBRATION

<u>R.Santorelli</u>

(on the behalf of the WG)

Gerda meeting – Padova 11/03/09

Content of the talk

- Introduction
- Calibration system
- Estimation of the optimal source position
- Strength of the source
- Background from the parking position
- New source setup
- Zurich laboratory
- Conclusions

²²⁸Th calibration source

- Investigations of different sources $\rightarrow \frac{228}{\text{Th chosen}}$
- Mechanical design of the structure (Materials selection absorber)

Goals:

- · Evaluations of the optimal positions and source strength
- Estimation of the induced background

Calibration system - Absorber

- Source \rightarrow Spherical (r = 0.4mm)
- Capsule \rightarrow Cylinder (h=10mm,r=0.5mm) SS
- Absorber \rightarrow Cylinder (h=60mm , r=35mm)

	Tungsten	Tantalum	
h [cm]	6.0	6.0	
ρ [g/cm³]	19.3	16.65	
μ (3MeV) [cm²/g]	0.0407	0.0406	
Mean f.p. [cm]	1.27	1.48	
Attenuation	9.0×10 ⁻³	1.7×10 ⁻²	

Material	Tungsten (99.97% purity)	Densimet (92.5% W + Fe,Ni)	Tantalum			
Screening results (mBq/kg)	$^{238}U \rightarrow 300 \pm 100$ $^{232}Th \rightarrow 30 \pm 10$ $^{60}Co < 8.1$ $^{40}K \rightarrow 40 \pm 20$	$^{238}U \rightarrow 180 \pm 30$ $^{232}Th \rightarrow 70 \pm 20$ $^{60}Co \rightarrow 7 \pm 2$ $^{40}K < 57$	238 U < 11 232 Th < 9 60 Co < 1.9 40 K < 33 137 Cs < 2.5 182 Ta \rightarrow 52 ± 5			
Ta bkg in the parking position $< 6.1 \times 10^{-8}$ cts/keV/kg/y (3×4kg)						

OUR CHOICE

TANTALUM

Optimal source position

Optimal source position estimated for each layer

Simulations at different z

²²⁸Th + W absorber considered with the previous dimensions

(5×10^6) ²²⁸Th decays simulated in each z position (3 sources) Total events in the layer and SEP events in detector with the lowest statistic considered

Minimum source strength

Investigation on:

- Energy calibration
- Pulse shape discrimination
- 3×10^{9} ²²⁸Th decays each in three positions
- Usual geometry
- Tantalum absorber
- Optimal z positions for the three layers simulated

Total and single detector spectra analyzed

Peak to bkg ratio for several lines considered (Gaussian fits – bkg integrated in 3σ) Detector with the lowest statistic in each layer identified

DET 5 (layer 2) with 3 x 20 kBq sources in 25 minutes

Line	Peak entries	P:B	Line	Peak entries	P:B
239 keV	22866	3.1:1	1593 keV (DEP)	575	2.1:1
511 keV	7002	4.4:1	1621 keV	767	2.7:1
583 keV	17244	21.8:1	2104 keV (SEP)	1638	4.2:1
727 keV	3602	6.8:1	2615 keV	14979	485:1
861 keV	2458	6.5:1			

- DEP \rightarrow Not sufficient statistic for PSD
- Optimization of the P:B ratio
- Bkg investigation
- Source \leftrightarrow detector dependence

Investigations on the DEP

- P:B not dependent on the number of simulated events
- The Absorber effect is small

Some conclusions:

- Main bkg from scattering in LAr
- P:B ratio similar for all the detector (even bigger for Det5)

Summary of a calibration run

- Absorber : Tantalum (h=60mm , r=35mm, m≈4kg)
- Z Positions : $Z_1 = -70 \text{ mm}$, $Z_2 = -210 \text{ mm}$, $Z_3 = -370 \text{ mm}$
- 3 x 20kBq sources
- 3 x 25 min calibration runs \rightarrow SEP statistic > 1.5 · 10³ entries in each detector

Gamma bkg from the source

Combination of analytical calculations and MC simulation Conservative upper limits required Real simulation on going

- Shield: d=350 cm LAr + d=6.0 cm absorber (Ta)
- Linear attenuation at 3.0 MeV considered
 - \Rightarrow Total attenuation 3.8×10⁻¹¹
 - Full simulations at 70 cm and 100 cm above the detectors
 - Source strength rescaled according to the analytical attenuation
 - Only downward direction considered

 $B_{Ta,LAr} = (1.8 \pm 1.0) \ 10^{-7} \text{ cts/keV/kg/y/kBq}$ $B_{Ta,LAr} = (1.1 \pm 0.6) \ 10^{-4} \text{ cts/keV/kg/y}$ $3 \times 20 \text{kBq sources}$ $10 \text{keV range on the } 0 \nu \beta \beta \text{ Q-value}$

4cm more of absorber can additionally reduce the gamma bkg by a factor 15

Gerda meeting - Padova 11/03/09

Neutron bkg from the source

 $^{228}\text{Th} \rightarrow$

 $E_{mean}(\alpha) \sim 6.5 \text{ MeV}$ $E_{max}(\alpha) = 8.8 \text{ MeV}$ neutron produced through (α ,n)

Reminder: standard source with ceramic pallet (α,n) reaction on the surrounding materials

 α emitter

 \Rightarrow

Neutron Rate = $3.8 \ 10^{-2} \ n/(s \cdot kBq)$

 $E_{mean} = 1.45 \text{ MeV}$

MC simulations:

350 cm LAr attenuation 6.7 10⁷ neutrons considered

- Mean interaction probability ~ 4.10-4
- 1.0×10⁻⁵ cts/(keV·kg·y·kBq)
- 6.0×10⁻⁴ cts/(keV·kg·y) @ 3×20kBq

5000

New Source development $3\text{ThCl}_4 + 16\text{HNO}_3 \rightarrow 3\text{Th}(\text{NO}_3)_4 + 4\text{NOCI} + 8\text{H}_2\text{O} + 4\text{Cl}_2$

<u>Lab @ UZH</u>

Gamma event acquired with the ADC (\rightarrow 718 keV)

<u>n-type HPGe</u>

40×40 mm

266 g

 $\begin{array}{rcl} \text{MCA} & \rightarrow & \text{CAEN N957 (8k)} \\ \text{ADC} & \rightarrow & \text{CAEN V1720 (12b-250 MHz)} \end{array}$

Resolution (FWHM -1332keV)	1.80 keV
FWTM/FWHM	1.82
FWFM/FWHM	2.46
Relative eff.	9.5%
Peak to compton	41

Conclusions

- ²²⁸Th → Preliminary simulations done
- Ta absorber selected
- Optimal positions investigated
- ²⁰⁸TI SEP \rightarrow good statistic in all the detectors ²⁰⁸TI DEP \rightarrow probably not good P:B ratio for PSD
- γ bkg from the source \rightarrow 10 cm absorber suggested from the preliminary results (more simulations in progress)
- n bkg from the source → new source developed with PSI bkg reduced by two order of magnitude