A new Germanium-spectrometer for material screening

Werner Maneschg, MPI for Nuclear Physics, Heidelberg

- Collaboration meeting

Universitá degli Studi di Milano-Bicocca

November 2006

Ge-detectors at MPI for Nuclear Physics

(see also GeMPI at LNGS)				
Detector	Bruno	Dario	Corrado	Adam
Туре	Coax p	Coax p	Coax p	Coax well
Crystal size [diam x lenght] [mm^2]	54.5 x 55.7	59.7 x 61	61.5 x 62	47 x 47
Active volume [ccm] Active mass [kg]	120 0.63	158 0.83	177 0.93	90 0.47
Relative efficiency	22%	31%	37%	17
FHWM @ 1.332 MeV [keV]	3.1	2.6	2.3 (old estim.)	1.9 (old estim.)
Max. sample-volume [dm^3]	0.85 (max. 1.16 without lead-brick)	11.05 (e.g. steel: up to 80kg)	13.46 (e.g steel: up to 100kg)	0.0034
Possible configuration of sample	Cylindrical box ("Standard-box")	"Standardbox"; Marinelli-beaker	"Standardbox"; Marinelli-beaker	Only small samples
Operating status	Operational	Operational	Ready in few weeks	2007
Manufacturing year	Canberra/91	PGT/85	PGT/90 Canberra	DSG/96

Detector sensitivity: strictly connected with background reduction Background reduction implies special requirements to the set-up/construction of the shielding systems

LLL at MPIK: mean shielding depth of about 15 m w.e. (soil, rock and concrete)

Main contributions to the background spectrum of Ge-detectors

- 1. Enviromental gamma radiation and radioactivity inside construction materials
- 2. Cosmic rays (shallow depths)
- 3. Airborne contamination

Building up the detector-chamber

Passive shield: -4tons of lead -300kg of ultrapure copper

 N_2 flushing system: permanent flushing of the detector chamber at slight overpressure (boil-off N₂)

Background-reduction through muon vetoing

Muon-vetos:

-Multiwire-proportional chambers: Potential applied to the anode wires: ca. +2.5kV; cathode planes grounded
-Anode wires : tungsten-gold; diameter: 50 μm
-Prop.gas used: P10 (90% Argon, 10% Methane)

Electronics assembly for the muon-veto system

Background spectrum: With and without top-chamber

Without Top-ch.*: ICR [(40-2700) keV]= 45115 cpd

<mark>-55%</mark>

With Top-ch.*: ICR [(40-2700) keV]= **19929 cpd**

Expected reduction for full operational system: -90%

* Energy-range and unit according to CELLAR-proposal

MC-Simulation of Corrado

Tools for the exact estimation of the geometry

X-ray imaging: advantages and typical cases

- Voltages used for x-ray imaging: 40-230 kV
- Comparison of the sizes provided by the manufacturer with real sizes; NOTE: x-ray images are only complementary to producer's drafts REASON: x-ray images -representing the "shadow" of the detectorcontains distortions; reconstruction to real sizes: error up to $\Delta q_i = \pm 1mm$
- Reporting some cases:
- #1: missing parts: front vespel, FET
 - determination of used materials (high or low densities)
- #2: displacement of the crystal with respect to the detector housing; example: coax-well detector

Status (15.11.06)

- Steel-structure and passive shielding (lead and copper) integrating a N₂-flushing system: **done**
- Building of 5 muon-chambers (Multi-Wirechambers): **completed**
- -Testing of the muon chambers (tightness, estimation of thresholds and ideal operational voltage): almost done
- -Mounting of muon chambers: will be finished **next week**
- -Providing of the complete electronics for all chambers: **ready in 1 month**
- -Characterisation of the detector (background spectrum...) already started
- -Detector operational: **beginning of 2007**

Summary & Outlook

- Beside Dario a second new detector with comparable chamber-volume will be operational at the beginning of 2007
 Doubling our screening capacity
- Spring 2007: renovation of our LLL; screening will be interrupted for a short period
- <u>I. Validation of the MC-code</u>: for the first time the geometry of the detector is well known; x-ray imaging as inspection-tool
- <u>II. Validation of the MC-code</u> with standards of higher density; a copperstandard in "standard-geometry" with a relative density of 4 g/ccm is now available.
- GeMPI III at LNGS: under construction