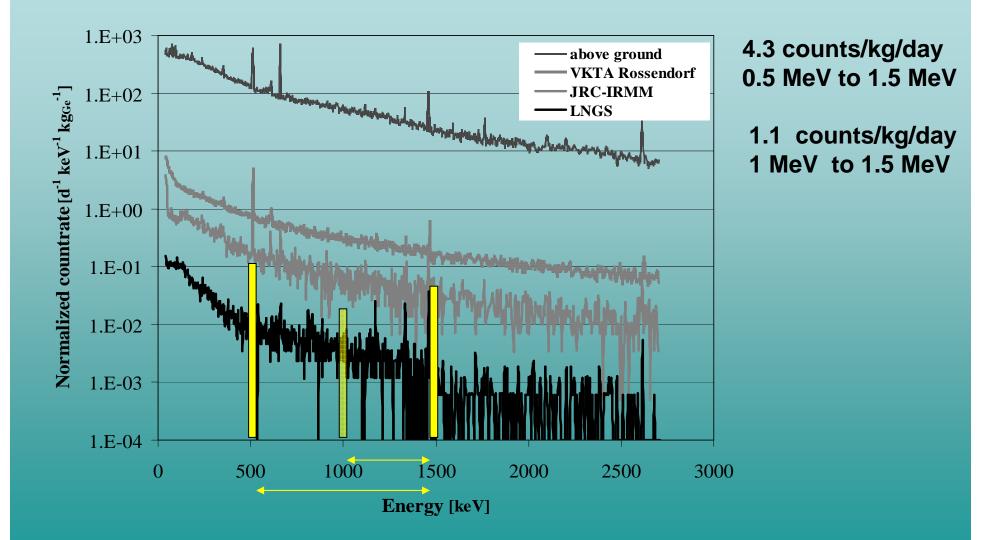

## ULGS prospects of the depleted germanium left after the enrichment of Ge-76 for the GERDA experiment

Sergey Belogurov, ITEP/INR

- The best blank spectra of ULGS facilities
- Background due to 2β2ν decay of <sup>76</sup>Ge in the natural detectors
- Other intrinsic backgrounds: <sup>68</sup>Ge, <sup>60</sup>Co, <sup>77</sup>Ge
- Depleted and double depleted detectors and their backgrounds
- When depleted ULGS detector would be justified
- When depleted reference detector for GERDA would be justified
- Conclusions and open questions

### The best blank spectra of ULGS facilities


M. Laubenstein et al. Appl. Rad. Isotopes 61 (2004) 167–172



GERDA meeting MI 2006

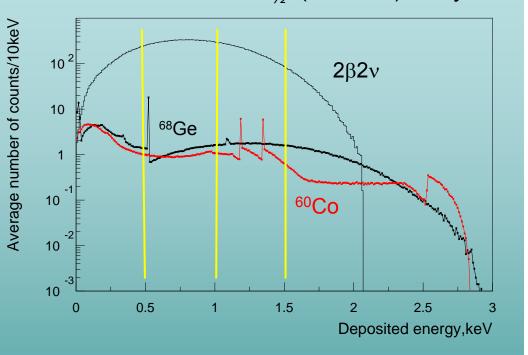
## The best blank spectra of ULGS facilities

M. Laubenstein et al. Appl. Rad. Isotopes 61 (2004) 167–172



#### Background due to $2\beta 2\nu$ decay of 76Ge in the natural detectors $T_{1/2}=(1.5\pm0.1)\cdot10^{21}y$

#### Ge-76 in natural detector:


0.7 counts/kg/day 0.5 to 1.5 MeV (1/6) 0.26 counts/kg/day 1 to 1.5 MeV (1/4)

#### Other intrinsic backgrounds

**Ge-68 in saturation** (nat. detector) 30 counts/kg/day 0.5 to 1.5 MeV

**Co-60 20 d activation** (nat. detector) 0.03 counts/kg/day 0.5 to 1.5 MeV

**Ge-77** (nat. detector) <0.005 counts/kg/day 0.5 to 1.5 MeV (s=0.14 b, J= (1.6 ±0.1)·10<sup>-6</sup> n/cm<sup>2</sup>/s)



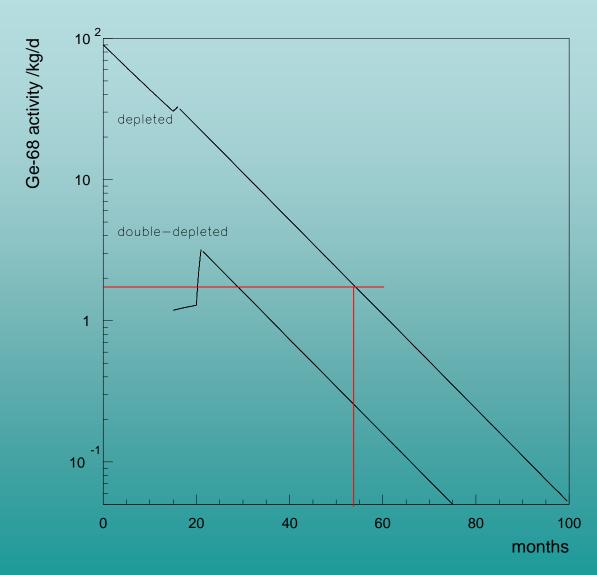
2 kg Ge-76 detector, 5 year measurement (thanks to X. Liu). Efficient activation 20 d for Co-60, 40 d for Ge-68

## Depleted and double depleted detectors and their intrinsic backgrounds

Isotope dependence of Co-60 production rate is weak

The only thing to care of is Ge-68

Ge, depleted from Ge-76 contains at the beginning all the saturated amount of Ge-68 from the initial natural Ge (33 counts/kg/day 0.5 to1.5 MeV)


Production rates (per day per kg) <sup>68</sup>Ge

| <sup>70</sup> Ge | 281.4 |  |  |
|------------------|-------|--|--|
| <sup>72</sup> Ge | 55.34 |  |  |
| <sup>73</sup> Ge | 28.0  |  |  |
| <sup>74</sup> Ge | 14.53 |  |  |
| <sup>76</sup> Ge | 4.22  |  |  |

#### Germanium composition and activation rates

| Ge isotope         | 70 (%) | 72 (%) | 73 (%) | 74 (%) | 76 (%) | <sup>68</sup> Ge Activation<br>rate, at/kg/d |
|--------------------|--------|--------|--------|--------|--------|----------------------------------------------|
| enriched           | 0.015  | 0.075  | 0.165  | 12.5   | 87.25  | 5.6                                          |
| natural            | 20.54  | 27.4   | 7.76   | 36.54  | 7.76   | 80.6                                         |
| depleted           | 22     | 30     | 8.5    | 38.5   | ≤ 0.5  | 86.4                                         |
| Double<br>depleted | ~1     | 38     | 11     | 48     | ≤ 0.5  | 37                                           |

### Depleted and double depleted detectors and their backgrounds

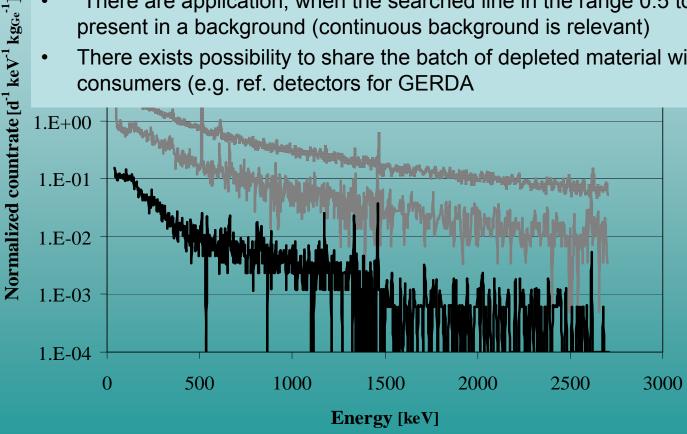


Between depleted and double-depleted  $\Delta T \sim 4.3$  years of which more than 1 year is already passed

If after a long underground storage a 20 day activation happens, counting rate in the 0.5 to 1.5 MeV will be 1.7 counts/kg/d in a depleted detector, 0.6 counts/kg/d in double depleted one.

Anyway waiting is needed, but for ULGS it should be OK

S. Belogurov ITEP / INR


GERDA meeting MI 2006

## When depleted ULGS detector would be justified

- Background rate in the newer natural detectors is appreciably less than in the shown spectrum.
- There are application, when the searched line in the range 0.5 to 1.5 MeV is not present in a background (continuous background is relevant)
- There exists possibility to share the batch of depleted material with other than ULGS consumers (e.g. ref. detectors for GERDA

## When depleted ULGS detector would be justified

- Background rate in the newer natural detectors is appreciably less than in the shown spectrum.
- There are application, when the searched line in the range 0.5 to 1.5 MeV is not present in a background (continuous background is relevant)
- There exists possibility to share the batch of depleted material with other than ULGS consumers (e.g. ref. detectors for GERDA



# When depleted reference detector for GERDA would be justified

The role of a reference detector in the GERDA would be to measure the background **in a case** of positive signal observation.

In principle the bigger is the difference in the Ge-76 contents in the enriched and the reference detector, the higher is the statistical significance of a result.

# When depleted reference detector for GERDA would be justified

The role of a reference detector in the GERDA would be to measure the background **in a case** of positive signal observation.

In principle the bigger is the difference in the Ge-76 contents in the enriched and the reference detector, the higher is the statistical significance of a result.

A numerical example (suppose that  $2\beta 0\nu$  decay exists):

 $enrN_{observed} = 6.$ 

Claiming discovery with a desired CL:

 $^{ref}N_{observed} < 2$ 

Probability to reject a discovery:  $P(^{ref.nat}N_{observed} \ge 2) = 17.3 \%$  $P(^{ref.deplt}N_{observed} \ge 2) = 3.7\%$ 

## Conclusions

- Observation of a good blank spectrum from one of the recent detectors is essential for a decision about depleted detectors. What is the counting rate of GeMPI-2 in the range 0.5 to 1.5 MeV ?
- Are there applications where low continuous background in the range 0.5 to 1.5 MeV is important?
- Observation of very low background in GERDA experiment with enriched detectors and observation of a small positive signal would be a strong arguments for depleted reference detector.
- At the time being it seems reasonable to provide formal reservation of the depleted material and its underground storage until new information essential for a decision about depleted detectors will be available.