Study of ³⁶Ar double electron capture

O. Chkvorets, M. Barnabe-Heider, K. Gusev, S. Schoenert

14 November 2006

O. Chkvorets, Gerda Meating, Milano

"Conventional" $0\nu 2\beta$ decay and "radiative" $0\nu ECEC$ process.

Emission of internal bremsstrahlung photons is one of possible mechanisms to release reaction energy. Two X-rays emitted when outer electrons fill produced holes in atomic shells.

Emission of one photon in K-K capture to ground state is forbidden due to AM conservation. The K-L, L-L ... captures are allowed.

Detailed discussion of possible mechanisms is in e.g. Doi, Kotani, 1993, Vergados, 1983.

³⁶Ar double electron capture – ECEC - is an allowed ECEC process. There is no low energy excited states for ³⁶S. No measurements exist.

TABLES OF DOUBLE BETA DECAY DATA-AN UPDATE

VLADIMIR I. TRETYAK and YURI G. ZDESENKO

Institute for Nuclear Research, MSP 03680 Kiev, Ukraine

TABLE I. Experimental Values (or Limits) and Theoretical Estimates of Half-Lives

for Various 2β Processes $(2\beta^-; 2\beta^+; \epsilon\beta^+; 2\epsilon)$

See page 93 for Explanation of Tables

$ \begin{array}{l} {}^{A}_{Z}X - {}^{A}_{Z \pm 2}Y \\ \Delta M_{A} \text{ in keV} \\ \delta \text{ in \%} \end{array} $	Type of result	Decay channel	Level of daughter nucleus	Decay mode	T _{1/2} (yt)	CL in % or Theor. Model	Refer- ence	Note
³⁶ ₁₈ Ar- ³⁶ ₁₆ S 433.5(0.4)	Exp. Th.	2e 2e	g.s.	2v	= 1.7 × 10 ²⁹	SM	Nak96	
0.3365(0.0030)								

New look to routine measurements can lead to unusual and unexpected results

- Natural argon contain 0.336% of ³⁶Ar isotope
- With a bare HPGe detector operating inside the source and cooling media – liquid Argon
- The 'radiative' neutrinoless ECEC process signature is a peak in the area of Q value of 2EC reaction: $E_{\gamma} = Q E_{\kappa} E_{L}$

= 433.5 keV - 2.47 keV - 0.23 keV = 430.8 keV

Experimental Setup at LNGS – test bench has very modest lead shielding (2.5 cm) and 20 cm of LAr – only ten times suppression of external background. It is not considered as a low background experiment.

Radon-free test bench in the LArGe detector laboratory

Efficiency of detection calculated with Monte-Carlo simulation

Analysis of background spectrum of the 1.6 kg HPGe detector in liquid argon at LNGS

Preliminary result

- Lower limit is expressed as following:
- $T_{1/2} > \epsilon * N_{36Ar} * (\Delta t / (B * \Delta E))^{1/2}$, 68% c.l.
- The efficiency ϵ of detection is 0.26%,
- Number of isotope atoms in 100 kg LAr with abundance = 0.336% is $N_{36Ar} = 5.9*10^{24}$ atoms,
- B = 440 counts/keV/day,
- Measurement live time, $\Delta t = 10.0$ days,
- Energy interval, $\Delta E = 4 \text{ keV}$,

Half life lower limit : $T_{1/2} > 1.9 * 10^{18}$ y 68% c.l.

Experimental results of the recent experiments (2003-2006) searching ECEC processes with transition to ground state.

The values are in the range 10^{16} - 10^{19} years. This level of sensitivity is defined by the usually very small abundance (<1%) of ECEC isotopes and also by the low efficiency of detection (<1%).

Isotope	Abundance, %	Mode	$T_{1/2},y$	Ref.	
$^{36}\mathrm{Ar}$	0.336	0ν ECEC	$1.9\cdot 10^{18}~(68\%)$	this work	
$^{50}\mathrm{Cr}$	4.345	$(0\nu\!+\!2\nu)\mathrm{EC}\beta^+$	$1.3 \cdot 10^{18} \ (95\%)$	Bikit et al. (2003) [12]	
$^{64}\mathrm{Zn}$	48.63	0ν ECEC	$1.0\cdot 10^{18}~(68\%)$	Danevich et al. (2005) [13]	
		$0\nu EC\beta^+$	$1.3 \cdot 10^{20} \ (90\%)$	Kim et al. (2003) [13]	
$^{74}\mathrm{Se}$	0.89	0ν ECEC	$6.4\cdot 10^{18}~(90\%)$	Barabash et al. (2006) [14]	
		$(0\nu\!+\!2\nu)\mathrm{EC}\beta^+$	$1.9\cdot 10^{18}~(90\%)$	_"_	
$^{106}\mathrm{Cd}$	1.25	2ν ECEC	$4.8 \cdot 10^{19} \ (90\%)$	Stekl et al. (2006) [15]	
$^{108}\mathrm{Cd}$	0.89	0ν ECEC	$2.5 \cdot 10^{17} \ (68\%)$	Danevich et al. (2003) [16]	
$^{112}\mathrm{Sn}$	0.97	$(0\nu\!+\!2\nu)\mathrm{EC}\beta^+$	$1.5 \cdot 10^{18} \ (68\%)$	Kim et al. (2003) [17]	
$^{120}\mathrm{Te}$	0.09	2ν ECEC	$9.4\cdot 10^{15}~(90\%)$	Kiel et al. (2003) [18]	
$^{130}\mathrm{Ba}$	0.106	$0\nu EC\beta^+$	$2.0 \cdot 10^{17} (90\%)$	Cerulli et al. (2004) [19]	
$^{136}\mathrm{Ce}$	0.185	2ν ECEC	$4.5 \cdot 10^{16} \ (68\%)$	Belli et al. (2003) [20]	
$^{138}\mathrm{Ce}$	0.251	2ν ECEC	$6.1 \cdot 10^{16} \ (68\%)$	_"_	
$^{180}\mathrm{W}$	0.12	$0\nu \text{ECEC}$	$1.3 \cdot 10^{17} \ (68\%)$	Danevich et al. (2003) [21]	

Prospects with LArGe

- Mass of Argon ~1 ton
- Mass of detectors ~ 30 kg , 8 enriched and 6 former GENIUS-TF nat. Ge.
- Background in the 0-500 keV region is limited by the bremsstuhlung photons from beta decay of Ar-39.
 Estimations of Hardy Simgen for GERDA give 3 counts/keV/kg/y in region of interest.
- LArGe half life sensitivity to ECEC after one year of measurements will be at 10²³ y.

Conclusions and perspectives

- For the first time a limit on the OnuECEC of 36Ar has been derived
- The first physical result obtained with a bare HPGe detector operated in cryogenic liquids
- A several order improvement of half life limit is possible with the LArGe setup utilizing HPGe detectors coincidences with LAr scintillations from X-rays and also massive low background shielding. Method is limited by 39Ar beta decay.