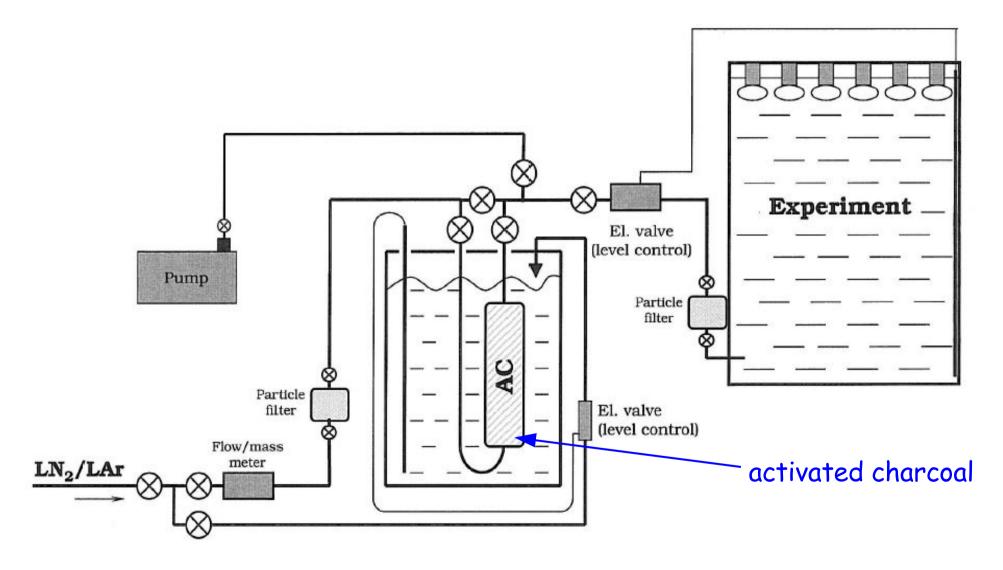
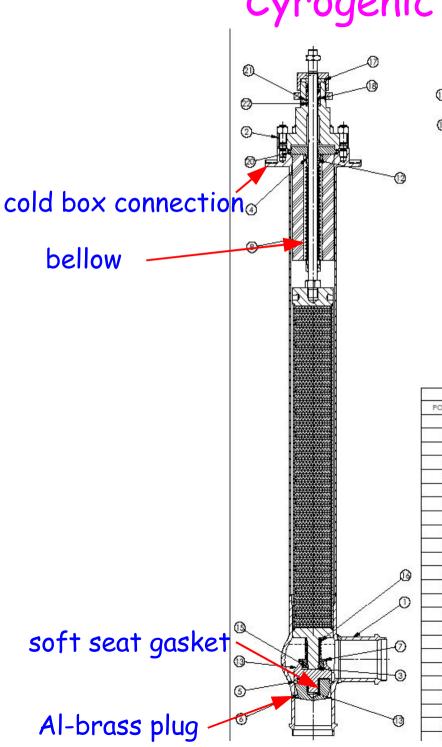

Cryogenic Infrastructure

Bernhard Schwingenheuer, MPIK Heidelberg


Content

- reminder of PID drawing for cryostat
- cryogenic control valves
- exhaust gas heating
- interface to Penthouse gas system
- tender

Piping and Instumentation Design



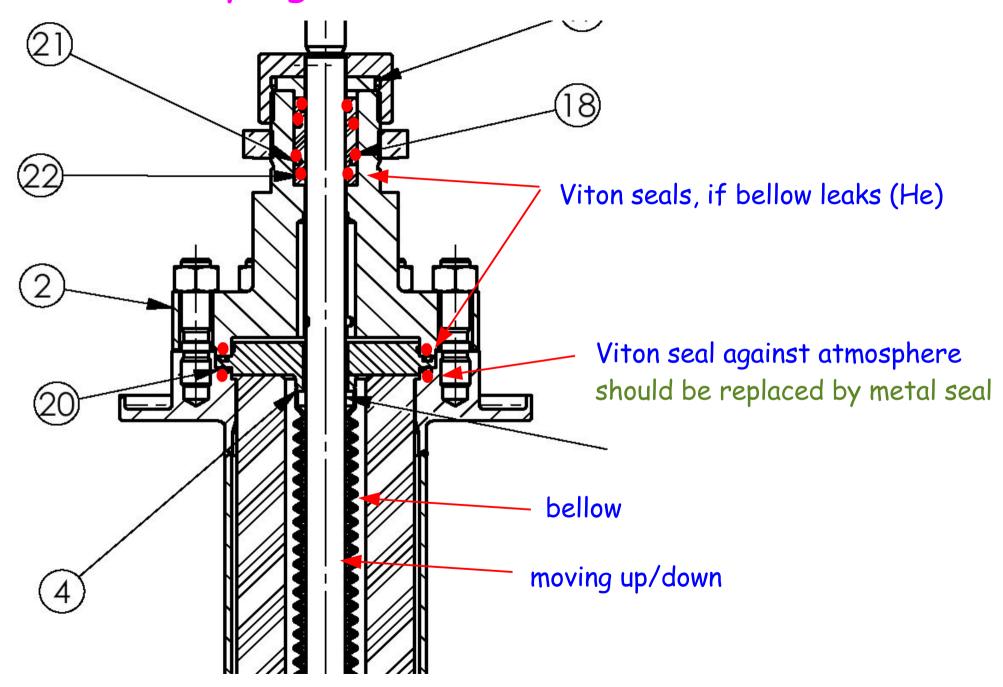
Radon purification plant

consensus: want a small unit for refilling, design needs optimization (valves,...) & integration into PID

Cyrogenic Control Valves

<u> </u>	 BOM	30 bar	-Ve			State	53
	 Sn.No.	PN_Class	Cryogenic Valve	,		1052388	DOC O
		2 1/2"	CNC			10	2
	OrderkW Oh:	DN_Sze				DNA	n delicate
	35295.13 o blerances	302 302	Firch				
		Surface 150 1302	Date 08.05.2006			35	
	weight (g) Dimension	900	ž	Dayo	ij	Pilo	
	E	1	Ventile				Ones.
Serial-No: TAG#	1	1	Kämmer V				Busineste
3 250MV319 7 290HV001	15		Kän	H	-		No.
3 250MV319 7 290HV001 27 300HV980 51 300MV989 52 300PV999	22						1 2

POS-NR.	Qty	Artikel-No	Material	Description		
1	1	1052373	316 L	Body with extension A=850		
2	1	1044135	1.4404	Bonnet		
3	1	1052379	1.4404	Plugextension		
4	1	1033344	1.4404	Bellows		
5	-1	1006560	PCTFE	Softseatgasket ø63		
6	1	1033559	2.0966	Plug ø63		
7	1	1033563	1.4404	Screw		
8	1	1033552	PE-HML500	Sleeve		
9	1	015530305	1.4305	Slip over nut M45x1,5		
10	6	\$42041004	A 194-B8	Hex nut M12 DIN934		
11	6	\$65021013	A 193-B8	Stud bolt M12x40 DIN939		
12	1	1030402	1.4404	Bellowsstem		
13	1	1033562	1.4404	Plug Shaft ø63		
14	1	0100092A2	A2-70	Plug G1/4"		
15	1	1033568	1.4404	Splitted Ring		
16	1	VD-313J-07	1.4310	Spring		
17	1	1030410	1.4404	Ring		
18	1	1030411	PTFE-GLAS	Guiding bush		
19	1	080537171	1.4571	Gasket		
20	2	S46011021	Viton	O-Ring		
21	2	\$46011003	Viton	O-Ring		
22	2	\$46011004	Viton	O-Ring		
23	1	0100069A2	A2-70	Hex nut M16 DIN439		
24	1	0100391A2	A2-70	Slotted ground put M45x105 DIN180		


what do we want?

- radon tight against atmosphere, how?
- open/close or linear flow regulator
- cross section?
- vacuum insulated?
- metall or soft(PCTFE, Vespel) seat?
- screwed or welded?

what is available?

- lots of valuable help
 by G. Perinic, CERN
- discussion with
 Hardy & Grzegorz

Cyrogenic Control Valves Detail

Exhaust Gas Heating

example calcuation external heat exchanger

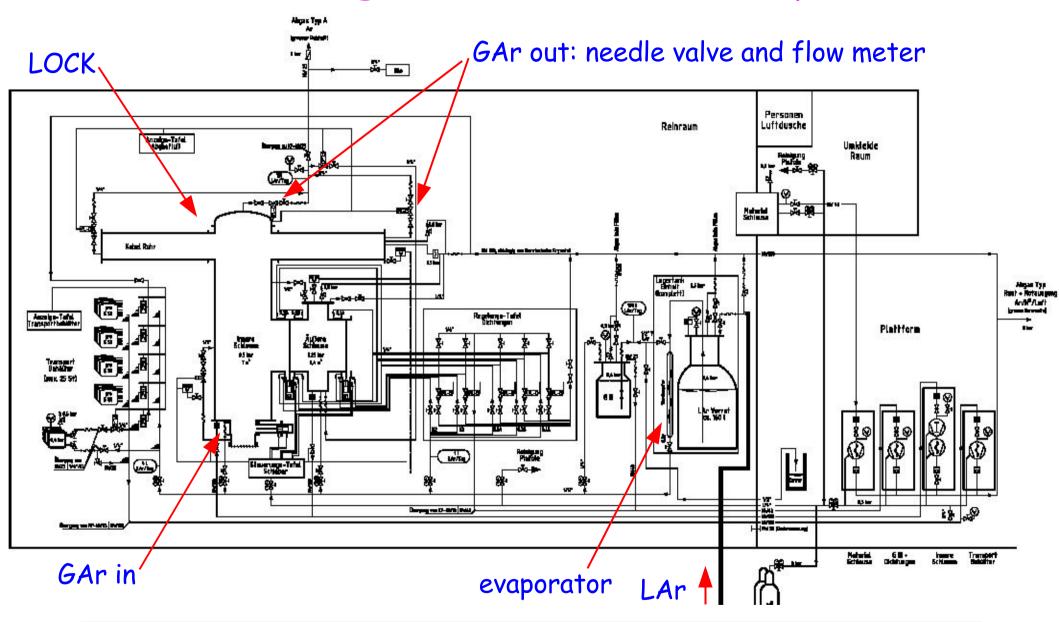
Final Results Released to the following HTRI Member Company: Gerd Lannewehr Gerd Lannewehr Xist Ver. 5.00 10.11.2006 08:22 SN: 1500212265 SI Units Wärmetauscher Argon/Wasser am Kryostat Gerda Max Planck Institut Kernphysik Rating - Horizontal Multipass Flow TEMA BEU Shell With Single-Segmental Baffles Cold Tubeside Process Data Hot Shellside 2 Fluid name Water Argon 3 Fluid condition Sens, Liquid Sens. Gas 4 Total flow rate 22.8898 4.0000 (kg/s) 5 Weight fraction vapor, In/Out (--) 0.000 0.000 1.000 1.000 6 Temperature, In/Out (Deg C) 20.00 16.00 -180.005.00 7 Temperature, Average/Skin 18.0 16.72 -87.5 16.09 (Deg C) 8 Wall temperature, Min/Max 13.24 18.66 12.23 18.10 (Deg C) 9 Pressure, In/Average (kPa) 150.002 146.332 150.002 146,998 10 Pressure drop, Total/Allowed (kPa) 7.340 6.007 11 Velocity, Mid/Max allow 0.29 17.62 (m/s)12 Mole fraction inert (--)13 Average film coef. (W/m2-K) 3177.38 74.16 14 Heat transfer safety factor 1.000 (--) 1.000 15 Fouling resistance (m2-K/W) 0.000000 0.000000 Overall Performance Data 17 Overall coef., Regd/Clean/Actual (W/m2-K) 54.96 60.10 / 60.10 18 Heat duty, Calculated/Specified (MegaWatts) 0.3839 19 Effective overall temperature difference (Deg C) 67.4 20 EMTD = (MTD) * (DELTA) * (F/G/H) 67.50 1.0000 (Deg C) 0.9985 23 See Runtime Messages Report for 24 warnings. **Exchanger Fluid Volumes** 27 Approximate shellside (L) 894.6 28 Approximate tubeside (L) 1819.6 Shell Construction Information BEU 30 TEMA shell type Shell ID 800.000 (mm) 31 Shells Series 105.290 1 Parallel 1 Total area (m2)32 Passes Shell 1 Tube 2 Eff. area (m2/shell) 103.644

33 Shell orientation angle (deg)

34 Impingement present

0.00

No


Heater à la Icarus not possible:

- 6 containers of h=5m, \emptyset =0.8m, filled with silicate half-spheres, electrically heated
- in case no electric cooling of LAr,
- for 700 Nm³/h LAr gas flow
- cost 150 kFuro

GERDA needs 8000 Nm³/h heater only known option: water reservoir 1) external heat exchanger

- $4 \text{ kg/s of LAr} = 8600 \text{ Nm}^3/\text{h}$
- --> 22 kg/s water, Ø=0.8m, h=5m 105 m² heat exchanger surface
- 2) internal heat exchanger
 - same construction
 - 330 m of \emptyset =0.1m pipe
- 3) pipes on outer surf. of water tank \emptyset =10m, h=3.3 m

Current Design of Penthouse Gas System

(variable) flow of GAr for Rn purging will modify gas pressure of cryostat
--> gas flow rate should be controlled by SPS of cryostat

Tendering

What is needed for start of tendering:

- feedback from NIER / LNGS concerning modifications of PID
- finalize PID:

```
include Rn purification
connection to penthouse gas system,
location of LAr & LN2 storage tanks
location of Rn purification, valves, ...
specify valves
pipe diameters, ...
```

- write tender document
- buy material delivered by MPI

Start tender early next year (German wide tendering)

Exhaust gas heater is a separate project:

- currently all (water) solutions 1-3 are dimensioned & conceptually designed
- should decide early next year (?)