Status of Muon Veto

Ludwig Niedermeier, Universität Tübingen, 13.11.2006

Muon Detector - PMT Distribution

4 rings on the wall of the water tank
2 rings on the bottom of the water tank
> inner ring: 8 PMTs
-> outer ring:12 PMTs

- 6 PMTs in the ,Pillbox' below the cryostat

Muon Detector - Cable Chimney

PMT - Encapsulation Design & Status

PMT Encapsulation - Tests

Test critical item, i.e. the modified cable sealing by adhesive shrinking tubes: **12 diff. scenarios**

All other components have been overtaken from Borexino / CTF design

- working since 5 years

PMT Base - Development

- Ground design from ETL for 9350KB
- Improved design (Bayarto Lubsandorzhiev):

PMT Base - Linearity

measured number of p.e.

Signal Decoupling and Stretching

Decoupling Station:
Coax. cable from PMT → -High Voltage

-Signal

 Active Stretching Unit: FADCs 100MHz (10ns)
Signal rise time: Some ns → ~30ns
Amplification integrated (±12V supply)

Signal Decoupling and Stretching

 \rightarrow B. Lubsandorzhiev (INR Moscow)

- Intention: Combine both in one module
- Integrate as many PMT channels as possible in a NIM unit (→ 3 4 NIM units)
- Add additional output for external discriminator \rightarrow hit pattern
- Production during winter (~3 months)

PMT Calibration - LEDs

- Developed ns light source based on powerful LED (0.5W) at 470nm
- Illuminates ~80 fibres (1 LED \rightarrow all PMTs)
- Fibre: Acrylic Attenuation: 10⁵ p.e./PMT after 30m (further attenuation needed)
- 3 LEDs tested (G-nor 8ns, LUMILED 10ns, CREE 12ns pulses)

Simulations - Muon distribution

→ Markus Knapp (Univ. Tübingen)

Muon Simulations – Summary

1

new MaGe steel cryostat	Data June 2006 - Gathered from 0.5·10 ⁸ muos - Scaled up	Now - Gathered from 1.35 [.] 10 ⁸ muons
all muons (~10y)	1.35·10 ⁸	1.35·10 ⁸
muons with E _{dep}	43200	55000
dangerous	594	590
ultra-dangerous	27	23

 \rightarrow ~2·10⁻³ (kg keV y)⁻¹ of dangerous ext. muons

with 95% veto: $\rightarrow \sim 10^{-4} \text{ (kg keV y)}^{-1}$

with anti-coincidence of Ge detectors:

1

 \rightarrow ~10⁻⁵ (kg keV y)⁻¹

Muon Veto - Schedule

- Encapsulation + Electronics tests under way
- Dez. 2006:
- Jan./Feb. 2007:
- Spring 2007:
- Sep. 2007:

Encapsulation of 1 PMT 7: Tightness test (2 bar) Encapsulation of all PMTs PMTs transport to LNGS

- We can meet the Gerda schedule -

- PMTs + VM2000 installation
- Electronics set-up + test