Proposal to activate a BEGe detector with at IRRAD-6 facility @ CERN

C. Cattadori INFN MiB & LNGS

Purpose

- Produce ⁶⁸Ge and ⁶⁰Co in a working BEGe detector to experimentally determine ⁶⁸Ge and ⁶⁰Co decay rejection power and cross check simulations.
- Study pulse shapes of several β^+ decaying isotopes produced in the irradiation
 - ${}^{57}Co(\beta^- + \gamma s), t1/2=272 d, Q_{\beta}=699 keV, E_{\gamma}=122 keV, 136 keV$
 - ${}^{54}\text{Mn}(\beta^+), Q_{\beta} = 1377, t_{1/2} = 312 \text{ d},$
 - ⁶⁸Ge(EC followed by ⁶⁸Ga(β^{+}), Q_{β} = 1.8 MeV),
 - ${}^{65}Zn (b^+), t_{1/2} = 244 \text{ d}, Q_b = 1352 \text{ keV}, E_{\gamma} = 1115 \text{ keV}$
 - 60 Co (β -), $t_{1/2}$ = 5.27 y, Q_b =2824 keV, \dot{E}_{γ} =1173 keV, 1332 keV

by tagging the 511 kev gamma line in coincidence with a gamma spectrometer (Legnaro, LNGS depending on the activity to be measured), uniformely distributed in the detector.

- Study pulse shapes of low energy events (X follwing EC).
- Study pulse shapes of events localized in the external part of the detector.....

Requirements

- The detector should work after irradiation, possibly without annealing cycle, therefore
 - an irradiation site with low flux particle field (Integral irradiation $< 10^8 10^9$ n),
 - n,p energy > 200 MeV (to produce not only ⁶⁸Ge but also ⁶⁰Co from ^{nat}Ge)

is required.

Where: IRRAD-6 facility @ CERN 23 GeV proton beam T7 beam line

and p-i-n diodes and radiation fileds have been simulated

Radiation fields

Primary beam conditions: (p,n,π^{\pm},γ) Secondary beam conditions: (p,π^{\pm},e^{\pm})

Possible to irradiate with low flux of hadrons ~ $4 \times 10^9 \text{ cm}^{-2} \text{ h}^{-1}$

Isotopes production rate (activation)

 $dN/dt = N_{target} * \int \sigma(E) * \phi(E) dE$

 $\sigma(E)$ – cross section $\phi(E)$ – hadrons (neutrons + protons) flux _{3,85E+07}

4,81E+06

Estimated activity produced in a 8 moles (640 g) BEGe detector for an integral flux of 10⁸ interacting particles

> ⁶⁸Ge: ~4 10⁷ nucleai produced ~ 2 Bq ⁶⁰Co: ~6 10⁶ ~10⁻² Bq

Experimental procedure

- Important: To keep the irradiation rate low, being able to see the ⁶⁸Ge and ⁶⁰Co decays in the irradiated detector, it is necessary to irradiate the detector in an Al chamber, in order not to activate the cryostat.
- → Define the proper irradiation exposure (time x position) @ IRRAD-6 performing activation tests with optical grade Ge.
- \rightarrow Build an Al irradiation chamber (done)
- \rightarrow Remove the detector from its cryostat
- \rightarrow Put the detector in the irradiation chamber
- \rightarrow Irradiate it @ the proper exposure (position x time)
- \rightarrow Put back the detector in its cryostat
- → Start measurements in coincidence/anticoincidence with a (multiple to increase the efficiency of γ -tagging) Ge spectrometer. From the ratio of

Tagged Event

----- = Rejection efficiency

SSE observed in detector

Problems

- Risky for the detector (dismounting, remounting, irradiation)
- Complex experimental procedure
- Authorizations? To transfer irradiated material (no problem towards Legnaro auth. already existing)

What has been already done:

Advanced Contact with IRRAD facilities responsible (M. Glaser)

To be defined

•Is it worthwhile?

•Location:

•IRRAD-6 or

•INAF Lab @ Plateau Rosa (Breuil Cervinia)

•Which detector? 70x30 mm ^{nat}Ge BEGe or a depleted one prior diode implantation?

When irradiation is possible?

•IRRAD facility doesn't have beam before end of april.

•PlateauRosa: Better before they close the cableway for mantainance (May)

Scheme of Ge-68 decay

Table of Isotopes.

⁶⁸Zn:⁶⁸Ga e decay

Ee	Elevel	Jp	T1/2	Ib ⁺ <u>†</u>	Ie <u>+</u>	I(e+b ⁺) <u>+</u>	Log ft
2921.1 12	0	0+		88.04	8.94.9	96.9 4	5. <mark>19</mark> 2 2
(1843.7 12)	1077.37 4	2+	1.51 ps б	1.1 1	1.7 2	2.8 3	5.52 5
(1265.2 12)	1655.94 6	0+	70 ps 35		0.031 4	0.031 4	6.93 6
(1038.0 12)	1883.14 5	2+	1.6 ps 3		0.222 24	0.222 24	5.89 5
(582.8 12)	2338.29 6	2+	0.24 ps ⁺¹¹ -6		0.083 10	0.083 10	5.81 6
(99.5 12)	2821.58 <i>12</i>	2+	0.15 ps <i>3</i>		0.0097 11	0.0097 11	5. <mark>14</mark> 5

†: For intensity per e 100 decays, multiply by 1 .

Scheme of Co-60 decay

Flux of cosmic ray particles at sea level at 40° N geomagnetic latitude. Data from J. Ziegler, Nucl. Instr. Methods, **191** (1981) 419. Below 3 MeV for electrons and about 10 MeV for protons the fluxes depend on local atmospheric conditions.