

TG11 – Overview

Grzegorz Zuzel MPI für Kernphysik, Heidelberg

Outlook

Update on hardware

- Ge-spectrometers (HD-Ge, GeMPI III/IV)
- Counter filling line
- Rn monitor

New results

- Rn daughters in LN₂/LAr, Po removal from Ge (K. Pelczar)

GERD

- Rn daughters removal from steel (M. Wojcik, this talk)
- γ ray screening (this talk)
- Rn emanation tests
 - Cryostat following talk
 - Other samples Hardy's talk

Future activities

Ge detectors

<u>Heidelberg</u>

- Bruno and Corrado are working
- Adam no muon veto, underground unknown
- Dario not working
- A new detectror with improved sensitivity to be installed in the LLL in the next future by G. Heusser

GERDA

Gran Sasso (GeMPI's)

- The detectors suffered from the ²⁰⁷Bi contamination, which could not be removed by etching of the cryostat parts (GeMPI IV)
- In April GeMPI III was removed from the shield and with GeMPI IV transported to Heidelberg
- The crystals will be refurbished and mounted in electropolished cryostats (soft parts new) by Canberra
- Installation of the detectors at GS should happen this year

New counter filling line

For the further Rn measurements at GS a new counter filling line and a new counting system is needed.

A new glass line is ready at MPI-K. After tests measurements it will be shipped to GS and installed in front of the GALLEX/GNO Faraday cage (space is available).

It was also decided to dismount the GNO electronics and install instead a new counting system based on a fast FADC (similar system is used in HD).

Radon monitor

First calibration tests have been performed

Nitrogen gas:

HV ~30 kV t ~ 24 h D.L. ~100 μ Bq/m³

Argon gas: HV ~9 kV t ~ 24 h D.L. ~200 μBq/m³

Detector to be ready for shipping in Sept. 2008

Rn daughters removal from Cu

- Screening of ²¹⁰Po with an alpha spectrometer 50 mm Si-detector, bcg ~ 5 α /d (1-10 MeV) sensitivity ~ 20 mBq/m² (100 mBq/kg, ²¹⁰Po)
- Screening of ²¹⁰Bi with a beta spectrometer
 2×50 mm Si(Li)-detectors, bcg ~ 0.18/0.40 cpm sensitivity ~ 10 Bq/kg (²¹⁰Bi)
- Screening of 210 Pb (46.6 keV line) with a Ge spectr. 25 % - n-type HPGe detector with an active and a passive shield, sensitivity ~ 20 Bg/kg
- Only small samples can be handled artificial contamination
 - needed: copper discs (50 mm diam.) loaded with ²²²Rn daughters (1.4 MBq source, few months exposure time)
- Etching and electropolishing was tested
- Etching does not affect ²¹⁰Po and removes most of ²¹⁰Pb and ²¹⁰Bi (> 98 %)
- Long electropolishing reduces ²¹⁰Po activity by a factor of ~ 400 much more effective than etching
- Electropolishing removes ²¹⁰Pb and ²¹⁰Bi more effective than etching (99.5 % ²¹⁰Bi and 99.9 % ²¹⁰Pb removed)
- Multi-stage polishing with fresh electrolyte each time seems to be the right strategy for effective copper surface cleaning

Rn daughters removal from steel

Discs exposed to Rn for 6 months. Cleaning according to the "BAMA" recipe: - etching in 20 % $HNO_3 + 1.7$ % HF + water

- passivation in 15 % HNO_3 + water
- rinsing with distilled water

Is	Original activity [cpm]	After 1 st cleaning [cpm]	Reductio n factor R	Amount of removed Cu	Remarks
²¹⁰ Pb	6.87 ± 0.08 1.48 ± 0.09	0.15 ± 0.01 0.030 ± 0.004	46 49		
²¹⁰ Bi	147 ± 3 18.6 ± 0.4	$4.0 \pm 0.1 \\ 0.60 \pm 0.03$	37 31	3.1 mg/cm² 4.0 μm	Etching time = 50 min
²¹⁰ Po	16.5 ± 0.5 1.83 ± 0.04	$0.88 \pm 0.07 \\ 0.41 \pm 0.02$	19 45		

Rn daughters removal from steel

Is	Original activity [cpm]	After 2 nd cleaning [cpm]	Reductio n factor R	Amount of removed Cu	Remarks
²¹⁰ Pb	$0.15 \pm 0.01 \\ 0.030 \pm 0.004$			0.84 mg/cm² 1.1 μm	Etching time = 90 min
²¹⁰ Bi	$4.0 \pm 0.1 \\ 0.60 \pm 0.03$	0.21 ± 0.02	19		
²¹⁰ Po	$0.88 \pm 0.07 \\ 0.41 \pm 0.02$				

Is	Original activity [cpm]	After 3 rd cleaning [cpm]	Reductio n factor R	Amount of removed Cu	Remarks
²¹⁰ Pb	0.15 ± 0.01 0.030 ± 0.004	< 0.0044 < 0.0049	> 34 > 6		Etching time = 120 min
²¹⁰ Bi	$\begin{array}{c} 0.21 \pm 0.02 \\ 0.60 \pm 0.03 \end{array}$	$\begin{array}{c} 0.048 \pm 0.019 \\ 0.017 \pm 0.019 \end{array}$	4 35	1.1 mg/cm² 1.4 μm	
²¹⁰ Po	0.88 ± 0.07 0.41 ± 0.02	$\begin{array}{c} 0.029 \pm 0.003 \\ 0.014 \pm 0.002 \end{array}$	30 29		

Rn daughters removal from steel

Is	Original activity [cpm]	After cleaning [cpm]	Reduction factor R	Amount of removed Cu	Remarks
²¹⁰ Pb	$6.34 \pm 0.07 \\ 2.11 \pm 0.03$	0.0318 ± 0.0025 0.0159 ± 0.0020	199 132		
²¹⁰ Bi	138 ± 2 36.7 ± 0.4	$\begin{array}{c} 0.79 \pm 0.06 \\ 0.21 \pm 0.02 \end{array}$	174 174	4.3 mg/cm ² 5.5 μm	Etching time = 120 min Solution stirred during etching
²¹⁰ Po	24.7 ± 0.2 5.2 ± 0.1	$\begin{array}{c} 0.55 \pm 0.02 \\ 0.30 \pm 0.01 \end{array}$	45 17		

- **Etching removes** $\sim \mu m$ of material
- Removal efficiency for ²¹⁰Pb, ²¹⁰Bi, ²¹⁰Po and ²²⁶Ra is high (better than for Cu)
- Passivation makes the process less effective
- Electropolishing still to be tested

γ -ray screening

GERDA

Further activities

- Cryostat further emanation measurements
- Ge spectrometry / Rn emanation regular tests of GERDA components
- Rn and Rn daughters in LAr further test to understand/control the phenomena (Rn sweeper, deposition of daughters on Ge)
- Rn daughters removal from steel (electropolishing) and Ge surfaces (for Ge the procedure to be defined)
- Calibration of the radon monitor
- Reinstallation of GeMPI III and GeMPI IV at GS
- Construction of a new Ge spectrometer in HD