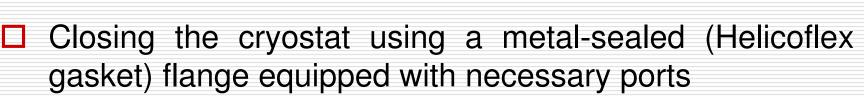


GERDA Cryostat Rn emanation


K.T. Knöpfle, B. Schwingenheuer, H. Simgen, <u>G. Zuzel</u> MPI für Kernphysik, Heidelberg

General remarks

- □ Tolerable rate: ~8 (14) mBq \rightarrow 10⁻⁴ cts/(kg·keV·y) assuming homogenous Rn distribution (GSTR-07-020)
- The cryostat and the lock to be considered as a one system?
- Is the assumption on homogenous distribution justified in the presence of e.g. permanent heat transfer causing convection?
- What to do in case of high Rn emanation rate?
 - additional cleaning
 - testing emanation at low temperatures (adsorption)
 - Rn sweepers (M. Wojcik)

Measurement procedure

GERDA

- Pumping down to min. 1 mbar (removal of air-born Rn) and filling with pure nitrogen (slight overpressure) twice
- Waiting ~1-2 weeks
- Adding cold and Rn-free nitrogen to mix the gas inside the cryostat
- Extracting two samples of some 10 m³ and scaling the measured activity to the full volume
- □ Total time needed for a full test: **min. 14 days**

Measurement at SIMIC

- Nov. 2007 mostly checking the "order of magnitude"
- After first cryostat cleaning.
 Outer vessel not yet ready
- No N₂ filling prior to the extractions (no gas mixing inside)
- Extracted samples send to HD for counter filling and counting

Unit	Description	Emanation rate [mBq]
PC storage tanks	$V = 114 m^3$ S = 140 m ²	TK2: 45 ± 8 TK4: 25 ± 3
EP North	$V = 0.7 \text{ m}^3$	~ 25
Linde (HP)	$V = 3 m^3$	2.7 ± 0.3
SOL	V = 16 m ³	65 ± 6
Linde (GS)	$V = 6 m^3$	3.5 ± 0.2

Measurement at SIMIC

- 1st test (23 m³ at STP) A_{tot} = (16.9 ± 1.6) mBq
- □ 2^{nd} test (45 m³ at STP) A_{tot} = (29.8 ± 2.4) mBq
- Since the second test seemed to be more representative we assumed the second result to be more realistic

$$A_{tot} \sim 30 \text{ mBq}$$

1st measurement at GS

- □ March 2008. After completion (IV + OV) and additional cleaning at SIMIC
- □ Cryostat prepared at SIMIC (filled with Rn-free N₂)
- Transportation time to GS used for Rn emanation (~1 week)
- Measurements were performed immediately after installation in Hall A

1st measurement at GS

- Cold and Rn-free N₂ added to the cryostat prior to the extractions (gas mixing inside)
- LAr used for cooling of the adsorption traps (much smoother extractions)
- Extracted samples processed and counted at GS

1st measurement at GS

 1st sample (44 m³ at STP): A_{tot} = (13.6 ± 2.5) mBq
 2nd sample (40 m³ at STP): A_{tot} = (13.7 ± 2.8) mBq

Average:

$$A_{tot} = (13.7 \pm 1.9) \text{ mBq}$$

2nd measurement at GS

- April 2008, preparation immediately after the evaporation test (following copper mounting) has been finished
- Top flange has been exchanged with the cryostat filled with nitrogen (neck covered with a plastic foil)
- Only 1 pumping cycle down to 1.6 mbar has been performed
- Extractions done 15 days later, after adding some cold and Rn- free nitrogen gas
- □ LAr used for cooling of the adsorption traps
- No access to the top flange a 15- mfullmetal flexible tube used for extractions was a part of the cryostat

2nd measurement at GS

GERDA

2nd measurement at GS

 1st sample (20 m³ at STP): A_{tot} = (120 ± 5) mBq
 2nd sample (26 m³ at STP): A_{tot} = (121 ± 5) mBq

Average:

 $A_{tot} = (121 \pm 4) \text{ mBq}$

Summary

Sample description	Single results [mBq]	Adopted value [mBq]	Comments
1 st test, SIMIC in Nov. 2007	16.9 ± 1.6 29.8 ± 2.4	~30	Empty cryostat after cleaning, no N ₂ mixing prior to extractions
2 nd test, SIMIC/GS in March 2008	13.6 ± 2.5 13.7 ± 2.8	13.7 ± 1.9	Empty cryostat, additional cleaning performed at SIMIC
3 rd test, GS in April 2008	120 ± 5 121 ± 5	121 ± 4	Cu shield inside, after evaporation test

Conclusions

- Increase of the Rn emanation rate by a factor of 9 after Cu installation
- □ Investigations of different parts used to fix the copper shield did not show any clear source of Radon → probably contamination with fine dust (see Hardy's talk for details)
- □ Residual Rn from the air cannot be completely excluded → an additional test is needed to definitively rule out that option
- □ How to proceed with cleaning and measurements → one of the construction and integration session topics (today afternoon)
- Checking if Rn is homogeneously distributed in the cryostat volume