Update on ²²²Rn emanation measurements

H. Richter, <u>H. Simgen</u>, G. Zuzel

MPI für Kernphysik

Outline

- ²²²Rn measurements with proportional counters
- Samples not related to the cryostat ²²²Rn problem
 - Cast steel valve
 - Abrasive paper
 - Gloves
 - Others
- Samples related to the cryostat ²²²Rn problem
 - Permanent marker
 - Silvered stainless steel screws
 - Flexible stainless steel tube
 - Copper eccentric disks
 - Dust

²²²Rn measurements with proportional counters

trap

trap

WTA cast steel cryogenic valve

Sample / Condition	Emanation rate [mBq]
Valve 1 open	2.0 ± 0.2
Valve 1 closed	0.7 ± 0.2
Valve 1 open + Indium	2.3 ± 0.4
Valve 1 closed + Indium	0.7 ± 0.1
Body (of valve) 1 only	1.8 ± 0.2
Body 1 after 1 st etching	0.21 ± 0.06
Body 1 after 2 nd etching	0.14 ± 0.04
Valve 2 open	7.0 ± 0.8

Abrasive paper

- Used for Ge-diode lapping (for HV-contact).
- 7.15 g sample (9 micron granularity) measured.

Gloves

Sample	Emanation rate per glove [mBq]
Nitrile #1 (one-way)	2.1 ± 0.2
Nitrile #2 (one-way)	2.7 ± 0.1
Nitrile #3 (multiple use)	75 ± 5
Viton (multipe use)	prepared for measurement

Other samples (not related to cryostat ²²²Rn problem)

Sample	Emanation rate
Pure water from Millipore ELIX system (revosmosis + electro-deionization)	(11 ± 3) mBq/m ³ before: (16 ± 2) mBq/m ³
Ultrapure water from Millipore MILLI-Q ADVANTAGE system (fed with ELIX water + ion exchange + TOC removal)	<4.9 mBq/m ³
Multi-wire flat cable for temperature sensors (Bürklin)	<0.17 mBq/m
PVC-tube (outer diameter 12 mm, wall thickness 2 mm)	(0.20 ± 0.03) mBq/m

Black permanent marker

- Residuals of permanent marker discovered on copper plates.
- For measurement painted on both sides of a 785 cm² copper-foil.

 $\textbf{<70} \ \mu \textbf{Bq} \ \Rightarrow \ \textbf{<0.45} \ \textbf{mBq}/\textbf{m}^2$

Silvered stainless steel screws

- Used for copper plate fixing in cryostat.
- Sample of 20 screws screened.

15 m ¹/₂" stainless steel tube

- Top of cryostat difficult to reach during water tank construction.
- ⇒ 15 meter 1/2" flexible stainless steel tube
 connected to top of cryostat and closed at bottom.
- \Rightarrow Part of tested volume.

15 m ¹/₂" stainless steel tube

- Used tube is still connected.
- Same type of tube bought for ²²²Rn emanation test.

(0.5 \pm 0.1) mBq \Rightarrow ~30 μ Bq/m

Eccentric disks for fixing of copper plates

- 60 eccentric copper disks (2 cm thick).
- Made from a Curod (see picture).
- Black surface (Cu-oxides?).

(1.43 \pm 0.14) mBq (35 cm sample) \Rightarrow (4.1 \pm 0.5) mBq/m \Rightarrow ~5 mBq from eccentric disks

Investigation of dust

- 113 g dust collected in hall A on 6.5.08
- From Germanium spectroscopy: ²²⁶Ra: ~20 Bq/kg
- Question: Which fraction is emanated?
- (Strongly?) depends on grain size.
- Broad distribution of grain size in the sample.

²²²Rn emanation from dust

- Worries about contamination of our assay system
- Solution: Put dust in water (assuming same emanation rate for dry and wet dust)

(2.4 \pm 0.2) Bq/kg \Rightarrow 12 % emanation rate

Is dust the main ²²²Rn source in the cryostat?

- ~40 g of dust would explain 100 mBq.
- That's a lot \Rightarrow Visual inspection didn't confirm.
- But fine dust fraction
 - may contain more ²²⁶Ra
 - may emanate larger ²²²Rn fraction
- A (small?) fraction of 40 g fine dust might be sufficient to explain 100 mBq.

