Results of cold charge sensitive preamplifiers tests with SUB detector.

D. Budjas, A. D'Andragora, C. Cattadori, A. Pullia, S. Riboldi, F. Zocca

<u>Outline</u>

•Purpose of the work: Test of FE circuits in the same condition for comparison and final choise

• Circuits tested:

Description of front-end circuits: technology, electrical characteristics and components
Test performed: cold FE electronics readout at INFN Milano with the SUB detector

The Sub at Mi University

PZ0 mounted below the Sub cryostat

<u>Phase I Candidate preamplifiers</u> IPA4+BF862 (cold) + II stage (warm)

IPA4+BF862

Technology: n-channel monolithic jFET Components •IC: IPA4

•External:

BF862 FET Feed-back network low voltage power supply filters (RC) Test Capacitor Resistors & Capacitors for biasing

II Stage

Circuit used to reduce IPA4 offset output voltage, give an additional gain and drive 50 Ohm devices

Phase I Candidate preamplifiers

PZ0 (CSA with external input transistor) Technology: AMS HV CMOS 0.8µm CZX chip on PCB

Components:

•IC

•External:

→ •BF862 FET

- feed-back network
- •low voltage filter capacitors
- Test Capacitor
- •2 Resistors for chip biasing
- •1 Resistor for FET biasing

SR1 (CSA with integrated input transistors) Technology: AMS HV CMOS $0.8\mu m$ CZX chip on PCB

Components:

•IC

•External:

feed-back network low voltage filter capacitors Test Capacitor Resistors for biasing

<u>Phase I Candidate preamplifiers</u> <u>CSA77 (cold) + Main amplifier (warm)</u>

<u>CSA77</u> Components: 4 BF862 + resistors and capacitors for biasing and filters

Main Amplifiers Circuit used to make pole-zero compensation, give an additional gain and drive 50 Ohm devices

GERDA FE electronics testing in Milano Results of tests with Ge-diode, preamplifiers immersed in LN.

Preamplifier (shaping time)	FWHM [keV] (1.33 MeV γ-line of ⁶⁰ Co)	FWHM [keV] (electronics contribution)	Rise time * [ns]	Decay time [µs]	Comments
PZ-0 (6 μs)	2.24 +	1.62 +	~16	~ 250	oscillation problems with 50 Ω termination on output, 150 Ω is ok
SR-1 (8 μs)	3.07	2.55	~30	~250	preamplifier bias voltage reduced to reduce bias current
CSA-77 (10 μs)	2.64	2.02	not measured nominal at room T: 11ns	~210	gain drift: oscillation of ~5 channels/hour, stabilised after few hr
IPA-4 (6 μs)	2.38	1.80	~100	~320	results with 2 nd stage amplifier

* rise time was measured with ~10m long coaxial cable on the signal output
 + values are averages of more low-statistic measurements (no long time measurement was performed with ⁶⁰Co or pulser)

GERDA FE electronics testing in Milano Electronic characteristics									
Preamplifier	LV bias [V]	Power [mW]	Driving load [Ω]	Cable between 1 st and 2 nd stage [m]	Energy sensitivity [mV/MeV]				
PZ-0	+4.7 (FET) +3.6 (CC) -2.7 (EE)	23.4	150	-	~217				
SR-1	+2.2 -2.2	Ŷ	50	-	~82 +				
CSA-77	+12 -12	Ś	50	1.4	~54				
IPA-4	+12 -3.4	~100 ?	50	1.8	~46 *				

⁺ measured at room T, with the first version of the cirquit

* without second stage

<u>Ge-diode characteristics</u>: readout with DC-coupling nominal HV (full depletion) = 2.5 kV capacitance when depleted = ~70 pF

Performances with COLD FE: PZ0

Comparison between **noise measured** at room temperature (T=300°K) and in LN (T=77°K)

Best resolution obtained with (encapsulated) prototype crystal and cold PZ0 CSA

Acquired output signal driving a 50 Ω coaxial cable of ~ 10 m : rise time of ~ 15 ns

Estimate of intrinsic noise of FE circuits starting from a background analyis $FWHM = k1 \cdot \sqrt{E} + k0$

PZ0 is the circuit with less intrinsic noise

PZ0: Test with 50cm cable on preamp-input. Purpose: simulate effect of cable length from bottom crystal in string to CSA location (top of string)

- increase of sensitivity to microphonics, RF pick-up and resonant disturbances in cirquit
- rise time worsening -> 25 ns
- resolution worsening:
 ⁶⁰Co: 2.24 keV -> 2.5 keV pulser: 1.62 keV -> 1.9 keV

Euroball capsule new test bench (Ge capsule of former Euroball experiment) Definitive Location: LNGS Autorimessa 2

Setup renewed (dewar, filling lines etc.)
New dewar (80 l) low
LN/LAr loss (less than 1 l/h compared to 1.6 l/h old dewar)

•Cooling down speed regulated by a winch used to slowly lower the detector (8-10 h to cool down safely) and a cold finger

•Cooling down procedure (with a new dewar) repetible, reproducible and working

1 cooling cycle performed (detector is cold in these days).Resolution at pulser 1.6 keV

Conclusions

From the comparison of the circuits tested, PZ0 is the best one, from the viewpoint of energy resolution and of timing.
Possibility to make PSA with discrimination of multi-site events and single-site events.

Purposes of the bench test

Test of fully integrated FE circuit (SR1).
Integration of SiPM (Silicon Photomultiplier) readout with Ge detector readout.
PSA (development of algorithms) with a fast FE circuit SR1 coupled to a Ge detector.