The Majorana Demonstrator
Update and Detector Technologies

Kai Vetter
Lawrence Livermore National Laboratory
UC Berkeley

- Update on the status of Majorana
- Detector technologies
- Craig Aalseth – DUSEL plans
Majorana as Demonstrator

- Majorana is currently envisioned as R&D project within DOE-Office of Nuclear Physics towards a 1-ton $0
 \nu \beta \beta$-decay experiment
- The Majorana Demonstrator will explore and identify the most promising options for a 76Ge-based experiment with the intention to be as complementary as possible with GERDA
- The Goal of the Demonstrator is:
 - Demonstration of ultra-low background [< 1 count/(ton year ROI)]
 - Explore most advanced and most promising detector technologies
 - Demonstrate feasibility in terms of scaling, cost, and schedule
 - Allow technology selection in 2013
Benchmarks of Achieved Goals

• Background level in ROI: <= 1 event/ton year
 – Defines total mass and lifetime of experiment:
 • ~ 60 kg of Natural or depleted Ge & Enriched Ge
 • Use 50 keV energy window around ROI
 • Operate for two years

• Signal sensitivity: Test KKDC
 – Defines ^{76}Ge mass and lifetime of experiment:
 • ~ 30 kg of ^{76}Ge
 • Operate for two years (at 86% enrichment)

• Demonstration of two most promising technologies
 – Operate P-type Point Contact (PPC) and N-type Segmented Contact (NSC) detectors
Reference Design

• “Standard” cryostats
 – Electroformed copper (EFCu) materials, internal shields
 – Ancient lead outer shield and active veto
 – LN2 (passive/radiation) cooling

• 60 kg of Ge crystals
 – A mixture of p-type and n-type crystals
 • P-type: Point-contact / PPC: 40 kg
 • N-type: 36-fold segmented /NSC: 20 kg
 – A mixture of enriched and natural or depleted Ge
 • 30 kg of 86% enriched 76Ge crystals (all PPC)
 • 30 kg of natural or depleted Ge crystals (20 kg NSC + 10 kg PPC)
 – 3 cryostats
 • Two for mixed PPC and one for NSC
 • Minimize interference in design, deployment, operation, and analysis
Schedule

• 3-phase approach:
 – Detector evaluation and demonstration (’07-’09)
 • Large (~1.5 kg) and highly-segmented n-type detectors (NSC)
 • Small (~0.75 kg) point contact p-type detectors (PPC)
 – Construction, characterization, and deployment (’09-’11)
 • 2-3 cryostats to optimize performance and schedules by minimizing interference in deployment and operation
 – Operation and analysis (’11-’13)
Highest risks/ challenges

• Backgrounds …
 – Small parts
 – EFCu

• Detectors…
 – PPC: Production requirements and yields
 – NSC: Background vs. performance

• Materials …
 – EFCu production facility underground
 – Ge processing, crystal growth

• Schedule …
 – Coupling to underground laboratory DUSEL/SUSEL

• Funding (NSF/DOE) …
Longer-term efforts/ collaboration opportunities

• In the context of one ton:
 – E.g. 1000 1kg detectors (cost, schedule)
 – Extremely low background
 – New fabrication capacities
 • Material processing
 • Crystal growth
 • Detector fabrication
 – Underground fabrication
 – Advanced, fast detector characterization
 – Advanced signal processing
 – Simulations (MaGe)
 – ….
Near-term plans – Funding/ proposals

• DOE/NSF: DUSEL R&D
 – Demonstrator high risk items
 – Crystal and detector fabrication reliability, underground production

• Submission of Majorana Demonstrator proposal to DOE

• DOE operational funds
 – Universities
 – Nat’l Labs
Detectors- Status and Plans

P-Type Point Contact Detectors:

- Explore geometries, mass, impurity concentration requirements, and manufacturer:
 - Detector obtained and characterized:
 - 1, Univ. Chicago – CANBERRA
 - Detectors ordered:
 - 1, PNNL – CANBERRA
 - 1, LANL – PhDs
 - Detectors to be ordered:
 - 1, ORNL – PhDs
 - 2, Univ. Chicago – ORTEC
 - Detectors being fabricated
 - 1, LBNL – Paul Luke
 + segmentation for time reference, absolute positioning, …
N-Type Segmented Contact Detectors:

- 36-fold segmented, closed-ended coaxial detector (GRETA/ AGATA – type)
- Can be produced and operated
 - ~20 complex detectors fabricated and tested to date
 - 2 mm spatial resolution in 3D for individual interactions demonstrated
 - Gamma-ray tracking demonstrated (sequencing, imaging, …)
- Background due to additional components?
 - Selection and location of components?
 - Impact on signal performance?
- GRET(IN)A prototype and SEGA detectors for test and evaluation of detector mount and readout concepts
NSC Detector Arrangement

- 7 2-detector “strings”
- 70 mm (diameter) x 80 mm (length)
- ~1.6 kg per detector
- Each string and each detector in string can be handled and replaced individually
- Central (HV) channel with cold front-end on top of string lid
- Segment electronics outside cryostat at a distance > 1 m
 - Reduce background
 - Reduce thermal load
Preliminary Design

Status of Majorana Demonstrator
Kai Vetter

GERDA Meeting
LNLS, Italy, November 5, 2007
Conclusions

• Majorana now Majorana Demonstrator as R&D project towards a 1-ton $0
\nu \beta \beta$
experiment

• All high-level tasks are defined (task-, subtask- leaders) and making progress

• Critical milestones defined

• Proposals are being prepared for NSF and DOE
 – Majorana Demonstrator to DOE
 – Complementary DUSEL funds through NSF and DOE