TG10: Simulations and Background Studies Summary Talk

Claudia Tomei – LNGS

GERDA coll. Meeting, June 26-28 2006, LNGS

Outline

- Changes in GERDA geometry
- New activities on simulations
- Report from TG parallel session
- Conclusions

A joint TG10 (simulations) and TG11 (material screening) parallel session is scheduled for this afternoon to discuss the validation and the accuracy of MaGe with new comparisons between measurements and simulations

Improving MaGe Visualization

Jing Liu

HepRep/Wired used in MaGe Visualization

Application on Test Stand

⁷⁷Ge decay rejection by delayed coincidence

Delayed background: muon-induced interactions can create long-lived (> ms) unstable isotopes in the crystals with $Q > Q_{\beta\beta} \rightarrow$ cannot be vetoed or shielded against

Most dangerous is ⁷⁷Ge from thermal neutrons: no threshold, high cross section (0.14 b), high decay Q-value (2.7 MeV), scales with enrichment.

⁷⁷Ge decay rejection by delayed coincidence

Luciano Pandola, Claudia Tomei – GSTR-06-012

Rejection Strategies

- a) 4 minutes dead time after each muon veto trigger → not feasible because of the high countrate:
 2.5 counts/minute above 120 MeV (from simulations)
- b) 4 minutes dead time after each coincidence muon veto/Ge array → the countrate is 2.5 counts/day in Phase II (mostly e.m. showers) and the dead time is 3%
- c) 4 minutes dead time after each energy deposit in Ge above 4 MeV (not related to muon veto) → the dead time is 1%

	Rejection	efficiency	$: \varepsilon = (\varepsilon_{N})$	$\varepsilon = (\varepsilon_{\rm MV} \times) \varepsilon_{\rm Ge} \times \varepsilon_{\rm dec} \longrightarrow 96\%$	
			> 95%	difficult to evaluate since the de-excitation scheme of ⁷⁷ Ge is poorly known \rightarrow MaGe simulations	
Detector scheme	γ-rays	ev > 50 keV	ev > 4MeV		
All det. All det. All det.	1 γ, 6 MeV 2 γ, 2 + 4 MeV 3 γ, 2 MeV	56% 85% 94%	39% 27% 19%	Cut b - In the most conservative case the rejection efficiency ε is 51%, with a dead time of 3%.	
Central det.	1 γ, 6 MeV	66 %	46 %		
Central det. Central det. Peripheric det.	2 γ, 2 + 4 MeV 3 γ, 2 MeV 1 γ, 6 MeV	92 % 98 % 54 %	29 % 37 %	Cut c - In the most favourable case the rejection efficiency ε is 35%, with a dead	
Peripheric det. Peripheric det.	2 γ, 2 + 4 MeV 3 γ, 2 MeV	83 % 93 %	25 % 17 %	time of 1%.	

Muon veto simulation update

Markus Knapp

Optical photons tracked within the MaGe framework. CPU-intensive but works ok.

Configurations with 72 and 78 PMTs are being explored.

Crytical regions: neck and bottom of cryovessel

Muon classification and distribution

- All muons
- Muons with energy deposition in the germanium detectors
- Dangerous muons with total energy deposition in the range (1.5 – 3) MeV

• Ultra-dangerous muons with total energy deposition in the energy window and only one hit in Ge

Muon Veto efficiencies

Simulation of segmented detectors with various segmentation options Claudia Tomei

Our approach was:

 to study many different options with a simplified geometry (only 1 GERDA detector)

• to focus on 2/3 realistic options and investigate the background suppression factor for GERDA Phase II (21 detectors, full geometry)

φ	Z	Tot	φ size	z size
1	2	2	24 cm	4 cm
1	3	3	24 cm	2.5 cm
1	4	4	24 cm	1.8 cm
2	2	4	12.6 cm	4 cm
2	3	6	12.6 cm	2.5 cm
3	2	6	8.4 cm	4 cm
4	2	8	6.3 cm	4 cm
3	3	9	8.4 cm	2.5 cm
4	3	12	6.3 cm	2.5 cm
4	4	16	6.3 cm	1.8 cm
6	3	18	4.2 cm	2.5 cm

Background Suppression for 1 Detector

10⁶ simulated events for each configuration - Ge threshold: 50 keV

Background Suppression for Phase II

²⁰⁸Tl and ⁶⁰Co inside crystals

Background Suppression for Phase II

²⁰⁸Tl and ²¹⁴Bi impurities in Cables and Electronics

- GERDA has already a working option for the Ge segmented detectors (18-fold, 6φ-3z) which fulfills the requirements in terms of background suppression and induced background
- We think that is nevertheless important to show that we have studied in detail the possibility of other segmentation options which have a lower background suppression factor but are maybe easier to build and require less cabling/electronics.
- From our preliminary results on some of the background sources we show that the decrease in the background suppression power is relevant only for intrinsic impurities
- We plan to continue the investigation for at least a couple of segmentation backup options

Conferences/Publishing activity of TG 10

MaGe Poster at TAUP 2005

Proceedings: "MaGe: a Monte Carlo framework for the Gerda and Majorana double beta decay experiments" Journal of Physics: Conference Series 39 (2006) 362-362Can be used as official reference for MaGe

MaGe Poster at Neutrino 2006

Papers to be submitted to NIM

Luciano Pandola et al., Monte Carlo evaluation of the muon induced background in the GERDA double beta decay experiment

Kevin Kroeninger et al., Background suppression in neutrinoless double beta decay experiments using segmented detectors - a Monte Carlo study for the GERDA setup

They will be presented during the meeting

GERDA Scientific/Technical Reports

Conclusions...

... let's wait for the TG10 parallel session this afternoon

Thanks!