Construction of

Inauguration, LNGS, 9 November 2010 Karl Tasso Knöpfle MPI Kernphysik, Heidelberg ktkno@mpi-hd.mpg.de

Construction of

design considerations progress of puzzle special aspects

Inauguration, LNGS, 9 November 2010

Construction of

0

Inauguration, LNGS, 9 November 2010

Purpose of Setup 'Provide environment for stable operation of Ge diodes with - at given constraints the lowest possible external radioactive background'

LNGS 2010/11/09

LNGS 2010/11/09

K.T.Knöpfle: Construction of GERDA

5

previous proposals

flat bottom tank, polystyrol isolation

Klapdor-Kleingrothaus., Baudis, Heusser, Majorovits, Päs, hep-ph/9910205

superisolated Cu cryostat in water tank

Zdesenko, Ponkratenko, Tretyak, J.Phys.G: Nucl.Part.Phys. 27 (2001) 2129

February 2005 GERDA proposal approved by LNGS Hall A in front of LVD assigned

> Constraint: available space Ø12m, h=11m

~14m

Solution: Combine conventional Pb/Cu shield with water and LN/LAr shields

14.8m

IVD

design study v1

custom-designed flat bottom tank (thick) perlite/styrol isolation inside (cold) Pb shield immersed in water tank

March 2004, Letter of Intent

September 2004, Proposal

adoption of fallback solution

Threefold increase of fabrication cost, and strong increase of copper price, and safety concerns by experts (3rd walll)

 July 2006 decision (~1 year lost): full copper cryostat to be replaced by stainless steel cryostat

64 m³ multilayer superisolation internal copper shield 40 16 tons (3 to 6 cm thick)

GeMPI γ spectrometers located at MPI-HD and LNGS worldwide most sensitive devices

used to determine Th-228 activity of EACH steel sheet used for cryostat production

NB: similarly unique device 'MOREX' used to determine the Rn-222 emanation in cryostat volume

screening of cryostat's ss sheets

results from γ spectroscopy at LNGS and MPI HD (more data available)

unexpected low Th-228 activity, typ. <1 mBq/kg ► less massive Cu shield needed

screening of cryostat's ss sheets

results from γ spectroscopy at LNGS and MPI HD (more data available)

07 jun 2007

100

repair of vesselhead

-0

cryostat assembly

3 mar 2008 IIII M FAYMOWWILLE cryostat leaving manufacturer, ~750 km to go

cryostat arriving in Hall A

L'Aquila M=6.3 earthquake & aftershocks 6 April 2009

L'Aquila M=6.3 earthquake & aftershocks 6 April 2009

Safety

Risk

earthquakes

cryostat in water tank

Mitigation

cryostat, water tank, GERDA building designed and built to withstand 0.6g

cryostat:

two independent containers no penetrations below fill level AD2000 pressure vessel design certified for 1.5 bar overpressure while operated at at 0.2 bar overpressure, and more

cryogenic and vacuum infrastructure: redundant sensors and safety valves

water tank:

drainage within less than 2 hours triggered automatically by cryostat's PLC

From start in 2005 detailed risk analysis by external experts – evaluated by LNGS – green light for construction June 2007

17 aug 2009

infrastructure built into and on top of cryostat

23 apr 2010

3-detector string & in-situ calibration spectra

3-detector string & in-situ calibration spectra

Sincere thanks to all who have contributed!

finis / backup slides

generic external background shields

LNGS 2010/11/09

Majorana setup

R&D: material screening / purification

Ge y spectrometers

- Baksan 600 m w.e. (soon \rightarrow 4900 m w.e.) 4-fold spectrometer
- Hades 500 m w.e. Ge-2 Ge-9
- MPI-K 15 m w.e. 3 diodes
- LNGS 3500 m w.e. GeMPI 1,2,(3) S : ~ O(10[100]) µBq/kg for heavy [light] samples

Rn-222 diagnostics / monitoring

- emanation technique
- gas purity analysis
- electrostatic chamber

a spectrometer

- Baksan (ionization chamber)
- Krakow

ICPMS (inductively coupled plasma mass spectrometry)

- Frankfurt U
- LNGS & commercial
- (measured materials: Kapton, Teflon, Torlon, MLI, PMT glass, Cu, steel, Cu/P granulate)
- Challenge: screening of plastic materials at required Th sensitivity

Surface purification studies (cryostat > 100 m²)

- Cu disks radiated with strong Rn source ~S : 1 μBq / m^2

S : U/Th ~ 1 μ Bg / kg > secular equilibrium? <

- S : 0.5 μ Bq / m² , 10 μ Bq / kg
 - : 0.1 1 mBq / m³

S : 10 Bq/m³ (quick), background: $0.002 / (cm^2 \cdot h)$

R&D: low mass diode supports and contacts

