MPIK # ^{76free}GeO₂ purification: experiment #3 17 Nov. – 6 Dec. 2005 M.Altmann¹, L.Bezrukov², A.Caldwell¹, V.Kornoukhov^{2,3} - 1 MPI fuer Physik (Munich) - 2 INR RAS (Moscow) - 3 ITEP (Moscow) ### Enriched ⁷⁶Ge isotope for GERDA (Phase II) Svetlana Department of the ECP (Russia): Batch of ⁷⁶GeO₂ enrichement: Ge-76 - 87.42% Ge-70 - 0.018% m = 37.5 kg with purity of 99.98% (technical grade) #### Goals of the experiment #3 #### Purification: 99.98% **→** 99.9999% $$m(^{76\text{free}}\text{GeO2}) = m(^{76}\text{GeO2}) = 37.5 \text{ kg}$$ Technology of production is the same as for $^{76}\text{GeO}_2$ - Yield of GeO₂/Ge metal of good quality - Effect of isotopic dilution (⁷⁶Ge)/enrichment (⁷⁰Ge) - Schedule of the purification: problem of activation #### General scheme of Ge purification GeO₂ (99.98% technical grade) # Starting material: ^{76free}GeO₂ Batch of ^{76free}GeO₂ – "waste" after ⁷⁶GeO₂ production Technology of production is the same as for ⁷⁶GeO₂ #### Isotopic composition: Ge-76 - 0.53% ### Preparation to the experiment All equipment are polluted with natGe!! "Washing" procedure, example: Chemical reactor, $V = 1 \text{ m}^3$ HCl concentr. at t = 110 °C, 24 hours 1^{st} 147 mg/L 2d 35 mg/L 3d 26 mg/L HCl conc. 1.76 mg/L #### Result of the experiment ``` 37.667 kg of ^{76free}Ge (in form of GeO₂) 2 batches of ^{76free}GeO₂ purified Yield: 72.78% Recoverable loss 15.18% Unrecoverable loss 12.04% # 414 # 415 17.938 kg 22.674 kg Ge metal m^* = 26.847 \text{ kg} 9 ingots 12 ingots ``` # Purity: results of certification at Germanyi, indirect (integral) method: $$GeO_2 \rightarrow GeCl_4 \rightarrow GeO_2 \rightarrow Ge metal$$ Specific resistivity at RT: $$\rho > 30 \text{ Ohm*cm} = 80\%$$ $$\rho > 10 \text{ Ohm*cm} = 94.5\%$$ Conclusion: good quality #### Experiment #3: quality control methods #### **Purity measurements:** • ICP MS (ELAN 6100) Svetlana • ICP MS X7* Chernogolovka • ICP-EAS Chernogolovka SparkSource MS (direct!!) Moscow • Measurements of $GeCl_4$ & GeO_2 Germanyi plant #### **Isotopic measurements:** • TI MS &EI MS Svetlana • ICP MC NEPTUNE Moscow • TIMS SECTOR 53 Moscow #### Summary • Yield of GeO2 72.78% Recoverable loss - 15.18% Unrecoverable loss – 12.04% Purity god quality: $\rho > 30 \text{ Ohm*cm} = 80\%$ $\rho > 10 \text{ Ohm*cm} = 94.5\%$ Isotopic dilution (not yet final result!) there is effect at level of 0.38% - 1.4% (natGe) 6 days (man 76free Ca) • Duration of purification ~ 6 days (pure $^{76\text{free}}\text{GeO}_2$) ### Results of certification: purity • X7 - ICP MS: all of 66 elements < DL • SS MS: all of 78 elements <= DL, except {C+N+O} = 3 ppm, Al = 0.03 ppm # **Isotopic composition measurements** | Product | Laboratory | Method, device | Ge76 | ΔC | |----------------------------|--------------------|---|--------------|-------| | Natural Ge | ЦЗЛ ПО "ЕСР" | EIMS MI 1201 №15,
TIMS MI 1201-AT №5 | 7.75 | | | Natural Ge | РАН ИГЕМ | ICP MS NEPTUNE | 7.74 | | | Batch 42 | ЦЗЛ ПО "ЕСР" | EIMS MI 1201 №15,
TIMS MI 1201-AT №5 | 0.52 | ±0.03 | | Batch 42 | ВНИИНМ | TIMS SEKTOR 54 | 0.53 | 20.03 | | Batch 42 | РАН ИГЕМ | ICP MS NEPTUNE | 0.57 | | | Batch 415 | ЦЗЛ ПО "ЕСР" | EIMS MI 1201 №15,
TIMS MI 1201-AT №5 | 0.69 | ±0.03 | | Batch 415-2 | РАН ИГЕМ | ICP MS NEPTUNE | 0.68 | 0.02 | | Batch 414-1
Batch 414-2 | ВНИИНМ
РАН ИГЕМ | TIMS SEKTOR 54
ICP MS NEPTUNE | 0.56
0.60 | | | Factory/
laboratory | Deco
mposi
-tion | H2SO4
distilla-
tion | Extrac tion | Rectifica-
tion | Total yield of pure GeCl4 | Hydrolysis | Total yield of
GeO2
Purified | |-------------------------------------|------------------------|----------------------------|---------------|--------------------|---|---------------------------|--| | GP,
exp. #3 | 97.93
% | 98.37% | 96.7% | 85.64% | 79.78% | 91.09% | 72.78% (taking into account sampling) | | Nisselson | - | - | - | 92%
(2 passes) | 92%
Recov. 3.24%
Unrec. los 4.72% | - | - | | GP +
Nissel I
small
column | 97.93
%
(GP) | 98.37%
(GP) | 96.7%
(GP) | 92%
(Moscow) | 85.703%
Recov. 3.24%
Unr.Los11.242% | 91.09%
(GP) | 78.067% Recover. 9.282% Unrec. 12.836% | | GP,
exp #4
expected | 97.93
% | 98.37% | | 88% | | 93.26% | 77.57% Recover. 13.26% Unrecov. 9.17% | | GP +
small
column at
GP | 97.93
% | 98.37% | 96.7% | ??? | ??? | ??? | ??? | | GP +
Nissel II | 97.93
%
(GP) | - | - | 92%
(Moscow) | 90%
(GP + Moscow) | 91.09%/
93.26%
(GP) | 82%/
83.4% | # Reduction procedure ^{76free}GeO₂ **Boats** Batch 414 17,938 kg Batch. 415 22,674 kg Number of cycles Identification number of regulus for boat 2-1 2-2 2-3 2-4 2-1-6 2-6 2-7 5 6 13__20 14 21 15 10 16 11 17 12 18 19 3 3 3 3 Batch 414 - 9 regulus Batch 415 – 12 regulus