Preliminary Background Report

GOAL: 10⁻³ /kg/y/keV

for a 100 kg y exposure

We have more then 10 sources of background!

Viele Hunde sind des Hasen Tod!

Radioactive

Deals and Limitations

Let's divide it up:

5 gbu for things close by

5 gbu for infrastructure and external

Let's face it:

If it screens against gammas, it probably produces neutrons.

We have a great MC, but we have to use it properly!

Never Assume...

close by radioactivity:

PI PII Detectors : Co: 150[840] 0.4[40]

Supression **35**[200/270]

5 [y2]

Sus

Suspension Cu: 15* 4

CFn: 25* 8

Cabling 6

20g, 1mBq/kg per detector

Electronics 6 3

10g, 100mBq/kg 35cm above string

Cryogenic 1 1 Liquid <1 <1

*MC based extrapolation

We are not there!

Can be worked on after we started!

Everything not close by:

The MC uses a simplified geometry. For some critical issues input is urgently needed.

Infrastructure/external:

		Nitrogen	Argon	
pads	Cu tank[25mBq/kg]			
	PΙ	2.0	0.1	
	PII	0.7	0.03	
	Steel neck[20mBq/kg]			
	PΙ	0.6	0.03	
	Superinsulation [38kg][5mBq/kg]			
	PΙ	1.3		
	PII	0.4	0.02	
	Water[10μBq/kg]			
	PII	0.2	0.01	
	External through tanks			
	PΙ	4.2		
	External through open neck			
	PΙ	[240]	9	
	[P I/P II=3]	2.4 [10cmPb]		
	PΙ	11.1 /	20 0.6	
	PII	2.9 /	20 0.2	
	²⁰⁸ TI on	v → 20% mor	e from ²¹⁴ Ri	

3.5 gbu is close.

Will have to be redone for new Infrastructure.

Add contribution from top.

Summary

	Phase I	Phase II
Array	200	27
Infrastr.	13	4
/External	0.8	0.3
Muon prompt	1	1
	1	1
Muon delayed	1	0.6
[10cm Pb]	9	6

Neither Nitrogen nor Argon provide a design with margin.

The top infrastructure and 3rd wall are not accounted for.

Radon Emanation and Surfaces are ignored.

Conclusions

We have to work on the Array!

The old design for the infrastructure does not have any "background margin"!

Argon produces background that scales with ⁷⁶Ge enrichment.

In an ideal world.....

Ideal World

Well, a better world.....

Larger Nitrogen volume

Plug instead of neck

Deeper underground

