

physics validation of MaGe
comparison with LArGe-MPIK: (preliminary) results

GERDA collaboration meeting Dubna, June 26th-29th 2005

M. Di Marco, D. Franco, L. Pandola, P. Peiffer, S. Schönert

MaGe progress: physics validation

2 data sets from:

- ⁶⁰Co source + 168 g bare crystal in LN (stat: 5.2e10)
- ²²⁶Ra source with a 830 g conventional crystal
 - 2 positions: in the center (statistics 8.5e7) & 60mm away (statistics 4.0e8)
- □ LArGe-MPIK: ⁶⁰Co, ²²⁶Ra, ¹³⁷Cs

Three tests:

- Comparison of the spectral shapes
- Efficiency (# of events in a gamma peak/disintegration)
- Ratio (# of events in a gamma peak/# of events in the gamma peak of reference)

MaGe progress: physics validation

MaGe progress: physics validation energy resolution

MaGe progress: physics validation Ra-226 calibration of conventional crystal

MaGe progress: physics validation Ra-226 calibration of conventional crystal efficiencies

statistical errors << 1%

γ lines (<u>center</u>) [keV]	MaGe	RD	MaGe/ RD	γ lines (<u>60mm</u>) [keV]	MaGe	RD	MaGe /RD
295	1.67x10 ⁻²	1.59x10 ⁻²	1.05	295	2.21 x10 ⁻³	2.35x10 ⁻³	0.94
352	2.55x10 ⁻²	2.51x10 ⁻²	1.02	352	3.27x10 ⁻³	3.67x10 ⁻³	0.89
609	1.47x10 ⁻²	1.62x10 ⁻²	0.91	609	2.45x10 ⁻³	2.78x10 ⁻³	0.88
1120	3.95x10 ⁻³	3.42x10 ⁻³	1.15	1120	5.57x10 ⁻⁴	5.92x10 ⁻⁴	0.94
1764	2.08x10 ⁻³	2.72x10 ⁻³	0.76	1764	3.45x10 ⁻⁴	4.15x10 ⁻⁴	0.83

MaGe progress : physics validation : Ra-226 efficiencies & ratios **Efficiency** in the center: 0.02 Real Data (stat. 8.5e7) 0.015 MonteCarlo (stat. 1.0e7) 0.01 0.005 Peak 0.004 0.0035 0.003 60mm away: Real Data (stat. 4.0e8) MonteCarlo (stat. 1.4e7) 0.0025 0.002 0.0015 0.001 0.0005 1 3 0 5 352 609 295 50 4 Peak

MaGe progress: physics validation Co-60 calibration of 168g bare crystal in LN

MaGe progress : physics validation : Co-60 efficiencies & ratios

summation peak off by a factor of 2

... but very simplified geometry for simulations

measurements in low-level lab: data with LAr veto

- 2 kg refurbished crystal in LAr covered with VM 2000 foil
- calibrations with encapsulated sources, positioned next to crystal
- all data shown here ~ 1h30 runs: meant to be quick test
- full depletion not reached: 1400 V instead of 2400 V
 high leakage current ⇒bad resolution effect ~ bigger dead layer 1.3 cm for MaGe simulations

measurements in lll: Cs-137

interesting because single gamma line

MaGe reproduces the spectrum quite well: full E peak, Compton edge ... except at low E: electronic noise, leakage current PMT threshold can be determined from shape of spectrum: at full E peak and from structure (Compton edge)

measurements in Ill: Cs-137

measurements in lll: Co-60

trickier: cascade of 2 gammas

measurements in 111: Co-60

measurements in lll: Co-60

MaGe reproduces the shape of spectrum quite well: single gamma peaks, double Compton edges

Ge signal Ge Entries 1364447 10⁴ Mean 0.1938 RMS 0.3456 10⁴ Tl-208 peak 10² 102 10 0.5 1.5 2.5 Without Veto Ge signal wosupp Entries 1364447 0.1938 10⁵ Mear EMaGe results 0.3456 RMS real data 10⁴ K-40 peak 10³ 10 zoom 0.8 1.2 1.4 1.8

note: even with r-a source, bkgd not negligible

measurements in lll: Ra-226

much trickier: whole Ra chain follows main gamma lines are present in both MaGe simulations and real data... but maybe with different ratios, depends on the equilibrium of the Ra chain

		18/i21-4 Q3 3:35:19% 1:51:40% 1:02:29%					
ԲԵ214 QB 103	Рb214 26.8 m	• 600	Po 218 3.05 m	≠	Rn 222 3925 d	4 ↓78.9↓5% ↓60.5%	Ra 226 1602a
TI 210	◀ 551 ንዓ% 5 49 54%	ام Bi214 ۱۹۴۳ د.مهر ۲۵۵۹	↓ 6790%	`× At 218 1.6∞			
Qβ 2.34.19% 1.87.56% 1.32.25%	¥ Pb210 223a -/224≪	4 769	¥ Po214 162μα				
	Qβ 0061 19% 001581%	Bi210 5.013d -/004	Βί 210 Qβ 1 J6				
	Pb 206 stable	4 531	₩ Po210 138.376 d				

measurements in Ill: Ra-226, MC: Bi-214

quantitative comparison between MaGe and measurements in Ill

• peak efficiency

- peak to peak ratios
- peak to Compton valley ratio
- cut efficiency

caveats:

geometry for Monte-Carlo quite basic
need much higher statistics and better resolution to study Ra-226 data

measurements in lll: Co-60

quantitative comparison between MaGe and measurements in Ill

mc

1	peak effic			
$\frac{\text{nb of } 0}{\text{nb } 0}$	Ge evts ir of desinte			
peak eff	line (keV)	mc (%)	real (%)	real
Cs 137	662	0,606 ±0,003	0,678±0,004	1,1
Co 60	1173	0,507 ±0,002	0,493 ±0,005	0,9
	1333	0,471 ±0,002	$0,460 \pm 0,004$	0,9
	summ	0,002 ±0,001	$0,002 \pm 0,001$	0,9
Bi-214	609	0,327 ±0,002	0,242 ±0,004	0,7
	1120	0,077 ±0,001	0,062±0,002	0,8
	1764	0,063 ±0,001	0,044 ±0,001	0,7

definition:

	peak lir ratios (ke		ne ∍V)	mc	real	real/ mc	
	Co 6	60 1 1	73	1,08	1,07	1,01	
		13	333	1,00	1,00	1,00	
		su	mm	0,005	0,005	1,02	
	Bi-214		09	1,00	1,00	1,00	
			20	0,24	0,25	0,94	
			764	0,19	0,18	1,04	
De	eak /	line	r	nc	real		
ompton (keV)		(keV)	(keV)		(keV)	real/mc	
Cs	s 137 662		123		94	1,3	
С	Co 60 1173		120		95	1,3	
13		1333	1	11	88	1.3	

quantitative comparison between MaGe and measurements in Ill

definition:	Psurv	line (keV)	mc (%)	real (%)	real/mc
survival probability =	🔸 Cs 137	662	100,1±0,5	85,2 ±0,7	0,85
nb of Ge evts after LAr veto	Co 60	1173	27,7 ±0,2	$29,0\pm 0,5$	1,05
raw nb of Ge evts		1333	25,7 ±0,2	28,6±0,4	1,11
		summ	100,0±6,4	108,9±11,0	1,09
\Rightarrow the lower the better					
	Bi-214	609	$24,9\pm0,3$	27,1 ±0,6	1,09
		1120	17,7 ±0,5	21,3 ±1,2	1,21
		1764	92,6±1,2	76,8 ±2,6	0,83

calculated in flat region around	ROI	mc (%)		real (%)		real/mc
2038 keV	Co-60	23	2	31	2	0,76
	Ra-226	48	5	27	5	1,78

measurements in lll: conclusions

analysis presented in this talk is preliminary data with bad resolution and poor statistics

but: we show that LAr suppression works MaGe reproduces the spectra fairly well

next: get crystal running!