Status of the muon veto

GERDA Collaboration Meeting

Kraków

February, 18th-20th 2008
Markus Knapp

Outline

- 1. Overview
- 2. Photomultiplier assembly line
- 3. Photomultiplier tests
- 4. Calibration system for PMTs
- 5. Muon veto DAQ

Overview

Overview: Muon veto

GERDA Meeting, Kraków, February, 18th-20th 2008 - Markus Knapp, University of Tübingen

Status of encapsulation

PMT 9350KB (ETL) delivered

small steel parts delivered

silicon gel delivered

polyurethane delivered

PET-window delivered

encapuslation delivered

mineral oil / µ-metal delivered

B20 socket and voltage divider delivered

cable / cable feedthrough delivered

Status of encapsulation

Status of VM2000

- 20 rolls of VM2000 are delievered (1,2 m x 45 m, each)
- Test of VM2000 glued on stainless steel in demineralised water has begun
- Till now, the foil is still fixed to the steel (1 week)
- Another sample is put into scintillator (DC-Experiment) and remains also fixed (3 weeks)
- If VM2000 remains glued, we consider gluing it on the watertank (additionally to the studs)

Assembly

PMT Assembly Line 1. Masterbond gluing

PMT Assembly Line 2. Cable soldering

PMT Assembly Line 3. Pouring of polyurethane

GERDA Meeting, Kraków, February, 18th-20th 2008 - Markus Knapp, University of Tübingen

PMT Assembly Line 4. Pouring of silicon gel

PMT Assembly Line 5. Oil filling

PMT Assembly Line Problem with airbubble!

GERDA Meeting, Kraków, February, 18th-20th 2008 - Markus Knapp, University of Tübingen

PMT Assembly Line One more step!

PMT Assembly Line One more step!

PMT Assembly Line Problem solved!

PMT Assembly Line Finished

Status of mass production

- 5 PMTs are fully encapsuled.
- 10 more are close to being finished.
- The other 60 will be encapsuled till end of June.

Tests

Status of encapsulation

pressure test running

since 6 months

- two prototypes
- no problems encountered

Status of encapsulation

pressure test running

since 6 months

two prototypes

 no problems encountered

Cable feedthrough tests

- vary lengths: x,y,l,h,s
- worst case scenario (cut, minimal lengths)
- running since 6 months under 2bar pressure
- no problems encountered

Summary: Status of encapsulation

GERDA Meeting, Kraków, February, 18th-20th 2008 - Markus Knapp, University of Tübingen

Calibration

Design: Calibration System

Two independent systems:

- Lightguides fed with one diode, attached to each PMT for direct calibration.
- Diffusor balls in the watertank, illuminating the whole tank at the same time.

Design: Calibration System

Diffusor balls:

- Several diffusor balls in the watertank
- Supplied by one or more LEDs
- Allows geometry dependant calibration
- Allows tests of Trigger

GERDA Meeting, Kraków, February, 18th-20th 2008 - Markus Knapp, University of Tübingen

Design: Calibration System

Single PMT Calibration:

- One LED control with 66 optical fibers as output
- Allows calibration of single PMTs, all with the same light source

GERDA Meeting, Kraków, February, 18th-20th 2008 - Markus Knapp, University of Tübingen

DAQ

Time information

Bottom PMTs register more photons, but later

Time information

GERDA Meeting, Kraków, February, 18th-20th 2008 - Markus Knapp, University of Tübingen

Grouping of photomultipliers -Overview

- Trigger on "Trigger out" of the FADCs (if one channel fires)
- One trigger generator
- an average of 5 kHz random rate per channel
- different FADC channel combinations will be tested
- a simple combination is one PM of the pillbox and one of each ring per FADC
- first results show, high efficiency of more than 98 % possible
- other combinations will be tested soon

Grouping of photomultipliers - DAQ scheme

Grouping of photomultipliers - Expected random rate

ΔT (ns)	# FADCs	rand. rate (Hz)	efficiency
30	4	3,42E-02	98.5%
30	3	1,27E+01	99.5%

No grouping of photomultipliers - Overview

- Trigger on single photomultiplier signals
- 86 Leading Edge Discriminator channels
- One logic module as trigger generator
- More cost intensive

No grouping of photomultipliers - DAQ scheme

No grouping of photomultipliers - Watertank

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ΔT (ns)	# PMTs	rand. rate (Hz)	efficiency
	30	5	1,38E-05	81,9%
	30	6	1,90E-08	79,8%
S 102 E 3	30	7	2,20E-11	78,0%

No grouping of photomultipliers - Pillbox

ΔT (ns)	# PMTs	rand. rate (Hz)	efficiency
30	2	1,13E+01	38,2%
30	3	2,25E-03	37,2%
30	4	2,53E-07	36,9%

No grouping of photomultipliers - Pillbox

ΔT (ns)	# PMTs	rand. rate (Hz)	efficiency
30	2	1,13E+01	38,2%
30	3	2,25E-03	37,2%
30	4	2,53E-07	36,9%

Dominates random rate

No grouping of photomultipliers - Some reasonable examples

# pill	# water	ΔT (ns)	total eff.	random rate (Hz)
2	5	30	99,6%	1,13E+01
3	5	30	99,4%	2,25E-03
4	6	30	99,2%	2,53E-07

Comparison of the two DAQ-schemes

PMT Triggering:

- Better random rate
- Easier to implement
- Higher cost

FADC Triggering:

- Less Modules
- Less expensive
- Higher random rate
- More complex in finding the best grouping of PMTs

Cherenkov veto schedule

February: Continuing of mass production

April: First batch of encapsuled PMTs

will be delievered to LNGS

• May/June: Finishing of mass production

Delievery of PMTs and additional testing

Mounting of PMTs in watertank

Summary

- All encapsulation parts are delivered
- Encapsulations are tight and the encapsuled photomultipliers show good signals
- Pressure tests running, and PMTs still working
- Calibration system will be designed
- DAQ with trigger on PMT signals shows lower random rates and similar detection efficiencies
- Production of encapsulations will be finished till May or June.

Thank you

Grouping of photomultipliers - Expected random rate

time window	coincidence	random rate (Hz)
30 ns	4 FADC	3,42E-02
30 ns	3 FADC	1,27E+01
50 ns	4 FADC	1,58E-01
50 ns	3 FADC	3,52E+01

Grouping of photomultipliers - Expected efficiency

time window	coincidence	efficiency
30 ns	4 FADC	98.5%
30 ns	3 FADC	99.5%
50 ns	4 FADC	98.9%
50 ns	3 FADC	99.5%

No grouping of photomultipliers - Expected efficiency ($\Delta T = 30 \text{ ns}$)

# pill	# water	pill eff.	water eff.	total eff.
2	5	38,2%	81,9%	99,6%
2	6	38,2%	79,8%	99,5%
2	7	38,2%	78,0%	99,3%
3	5	37,2%	81,9%	99,4%
3	6	37,2%	79,8%	99,2%
3	7	37,2%	78,0%	99,1%
4	5	36,9%	81,9%	99,4%
4	6	36,9%	79,8%	99,2%
4	7	36,9%	78,0%	99,1%

No grouping of photomultipliers - Expected efficiency ($\Delta T = 50 \text{ ns}$)

# pill	# water	pill eff.	water eff.	total eff.
2	5	38,4%	81,9%	99,6%
2	6	38,4%	80,5%	99,5%
2	7	38,4%	78,6%	99,3%
3	5	37,7%	81,9%	99,5%
3	6	37,7%	80,5%	99,3%
3	7	37,7%	78,6%	99,2%
4	5	37,2%	81,9%	99,4%
4	6	37,2%	80,5%	99,2%
4	7	37,2%	78,6%	99,1%

No grouping of photomultipliers - Expected random rate: Watertank

time window	coincidence	random rate (Hz)
30 ns	5 PMTs	1,38E-05
30 ns	6 PMTs	1,90E-08
30 ns	7 PMTs	2,20E-11
50 ns	5 PMTs	1,07E-04
50 ns	6 PMTs	2,44E-07
50 ns	7 PMTs	4,71E-10

No grouping of photomultipliers - Expected random rate: Pillbox

time window	coincidence	random rate (Hz)
30 ns	2 PMTs	1,13E+01
30 ns	3 PMTs	2,25E-03
30 ns	4 PMTs	2,53E-07
50 ns	2 PMTs	1,88E+01
50 ns	3 PMTs	6,25E-03
50 ns	4 PMTs	1,17E-06

No grouping of photomultipliers -**Expected random rate: Pillbox**

time window	coincidence	rancom rate (Hz)
30 ns	2 PMTs	1,13E+01
30 ns	3 PMTs	2,25E-03
30 ns	4 PMTs	2,53E-07
50 ns	→ PMTs	1,88E+01
50 ns	3 PMTs	6,25E-03
50 ns	4 PMTs	1,17E-06

Mounting

In principal, a very easy mounting:

- Two studs per PMT
- Several clamps for the cable
- Cable channel in the upper part of the watertank
- Flanges feeding the cables out of the watertank

In principal, a very easy mounting:

- Two studs per PMT
- Several clamps for the cable
- Cable channel in the upper part of the watertank

GERDA Meeting, Kraków, February, 18th-20th 2008 - Markus Knapp, University of Tübingen

In principal, a very easy mounting:

- Two studs per PMT
- Several clamps for the cable
- Cable channel in the upper part of the watertank
- Flanges feeding the cables out of the watertank

In principal, a very easy mounting:

- Two studs per PMT
- Several clamps for the cable
- Cable channel in the upper part of the watertank
- Flanges feeding the cables out of the watertank

cable tray

- 30 segments (about 100 cm x 40 cm)
- every 6° one segment
- 2 holders for each segment (if possible)

watertank

In principal, a very easy mounting:

- Two studs per PMT
- Several clamps for the cable
- Cable channel in the upper part of the watertank
- Flanges feeding the cables out of the watertank

Main problem:

How to reach the upper studs

Two possibilities:

- A mobile rack that will be shifted from segment to segment inside the watertank
- A mobile hoisting platform
- For both solutions offers are already available

