"Update of the empirical interpretative model of the y-ray induced leakage current (LAriiLC)" **GERDA** Meeting **Jagiellonian University** Krakow, 18th-20th February 2008 C. Cattadori, A. Di Vacri, L. Pandola M. Barnabé-Heider, O. Chkvorets, K. Gusev, S. Schonert

Outline

- The LariiLC empirical model
 - ✓ Collection of positive and negative charge
- Validation of the model from literature
 - Charging of SiO₂
 - Understanding of how charge can affect SiO₂
- The most likely and reasonable mechanism to explain increase in SiO₂ conductivity
 - Interpretation of some experimental observations in terms of thism mechanism
- Results of the operation of the detector without any passivation layer.
- Summary and Conclusions

Empirical model of the y-ray induced LC (LAriiLC)

GOAL: to explain the mechanism that drives the increase of LC observed during γ -irradiation Basic points:

- LAr surrounding the detector, in case of both bias at +HV and at -HV, experiences a strong electric field
- When irradiating with a ⁶⁰Co source, ionization happens both in a. Ge
 - b. LAr
 - Concerning LAr volume, the electric field generated around the detector separates and drifts charges toward respective electrodes. e^{-s} survive in LAr ($[O_2] \sim ppm$) only few []s, then they are trapped to form O_2^{-}, OH^{-} , which are slowly (cm/s) drifted to +HV surfaces.
- The charge collected on the passivation layer (PL) results in an extra conductivity ($\rho \sim 10^{14-15} \Omega/cm$).

The model consists of 3 main parts:

- 1. Charge production;
- 2. Charge transportation and collection @ detector surfaces;
- 3. Effect of collected charge on SiO₂ conductivity.

E field numerical computation by Maxwell 2-D

Crystal (Ge,Li,B,SiO), Cu holder, IR shield have been described with actual geometry e materials

Material (not in MAXWELL database)	Rel. Permittivity	Conductivity [siemens/m]
Doped Ge (n+ & p+)	16	9.10^{4}
Intrinsic Ge	16	$1.8 \cdot 10^{-4}$
(bulk)		
Liquid Ar	1.5	0

--> copper

25 mm

--> teflon

The problem is solved at finite elements, after choosing the proper grid dimension

Output of numerical computation: Values and direction of E field \rightarrow E_r and E_z

IR-shielding --> 0 V Cu holder --> 0 V

Configuration 1: n+ --> 4000 V p+ --> 0 V

Configuration 2: n+ --> 0 V p+ --> -4000 V

How estimate charge collected

- Evaluation of effective volume (E>500 V/cm and right direction) for collection of each charge (positive or negative);
- 2. From Monte Carlo simulation, determination of ionization rate in LAr and mean deposited energy in LAr

Source position	IR in Ge [kHz]	IR ^{MC} in LAr [kHz]	IR ^{MC} in effective LAr [kHz]
0	1.5	3.59	1.71

 The volume considered as effective in the MC is the one below the crystal with height=4cm (E>500 V/cm with +HV)

Charge density on the PL and E field built up as a consequence of charge pile up

	Positive	ρ (+ q)	E	V	Negative	ρ (+ q)	E	V
	charge	[ion/d·cm ²]	[V/cm]	[mV]	charge	[ion/d·cm ²]	[V/cm]	[mV]
	(+q)				(-q)			
	[pC/d·cm ²]				[pC/d·cm ²]			
+HV	2.4·10 ²	1.5 ·10 ⁹	140	1.4	2 ·10 ³	1.1·10 ¹⁰	2.5·10 ³	0.25
-HV	1.8 ·10 ³	1.1·10 ¹¹	2.5·10 ⁴	250	6.5 ·10 ²	4·10 ⁹	920	9.2

Assumptions for these evaluations:

- IR derived from MC is scaled at different effective LAr volumes.
- Mean energy deposited by ⁶⁰Co γ in LAr is \approx 300 keV.
- All the charges produced by ionization in LAr effective volume are collected at the PL. e⁻s recombine with impurities and produce negative ions.
- There is no charge recombination at the PL.
- E field is calculated by Gauss theorem ($\epsilon_r(SiO_2)=3.9$, that is the value for thermal oxides, for CVD oxides like we have it can vary widely)
- Thickness of SiO_2 layer = 100 nm (the exact value is unknown but the layer could even be thicker)

Some important preliminary remarks

There are no analogous cases known from literature.

 SiO_2s are widely studied in the field of microelectronics and increases of leakage currents are reported by many authors. Anyhow our conditions are very different from standard situation:

• the oxide layer is thicker than SiO₂ layers applied in semiconductor devices;

• SiO₂ is at LAr temperature;

• SiO₂ is deposited on n+ or p+ contacts where Ge is highly doped with metals, apart from the groove where the interface semiconductor/SiO₂ is present.

→ LAriiLC doesn't claim to be able to explain quantitatively the experimental data or predictive.
→ It can give a qualitative idea of what is happening.
→ It has been and is helpful to address experiments in the direction of understanding of the phenomenon.
→ The comparison with experimental data allows to reject some hypotheses that were put forward at the beginning.

Current experimental situation (see Marik talk)

3 detectors has been tested both in +HV and -HV configuration in LAr:

- 1. Prototype with passivation layer;
- 2. GTF1 with passivation only in the groove;
- 3. GTF2 without passivation layer.

Overview on experimental observations

Increase of LC with irradiation with prototype

 a) Higher increase of LC with irradiation closer to the PL
 b) Increase of LC steeper with -HV than +HV

 Much smaller LC increase with GFT1
 Difference of steady LC (ΔLC₀) when switching from +HV to -HV configuration (and viceversa), both in prototype and in GTF1
 Effect of previous irradiations with +/-HV configuration on results with opposite configuration

5) Unlinear behaviour of LC increase with γ-irradiation

6) Results of the detector without passivation layer.

Charging of SiO₂

Charging of SiO_2 by corona discharge is a known technique* to perform contactless surface charge for semiconductor characterization. Charge, in these measurements:

- 1) as a "gate" in MOS type measurements, where the charge replaces the metal or poly-silicon gate,
- 2) as a surface modyfing method where the charge controls the surface potential. It is measured as a function of probe voltage to determine oxide properties (oxide charge, oxide thickness, interface trapped charge).

The situation is analogous to ours apart from temperature (T(room) vs T(LAr)) and the ionized medium (air vs LAr)

* "Contactless surface charge semiconductor characterization" D.K. Schroder, *Material Science and Engineering B91-92 (2002) 196-210*

Charging of SiO₂ (II) $Q_{ox} = C_{ox}V_{ox} = \varepsilon_{Rox}\varepsilon_{0}V_{ox}/t_{ox}$

where a) t_{ox} is the oxide thickness b) Q_{ox}≈10¹⁰ charge/cm² the charge in the SiO₂.

This value is of the same order of the charge collected on the PL by collecting ionization charges in LAr.

Limit in the amount of charge that can be deposited on the oxide because the charge is related to the oxide electric field e_{ox}

 $Q = \varepsilon_{Rox} \varepsilon_0 \varepsilon_{ox}$ Charge builds up --> the surface voltage increases, until charge density leaks through the oxide by Fowler-Nordheim or direct tunneling and the surface potential is clamped.

SiO₂ breaks at $\varepsilon_{0x} \approx 10$ MV/cm with "breakdown" charge $\approx 4 \cdot 10^{-6}$ C/cm² From LAriiLC estimations of built up E $\varepsilon_{0x} \leq 30$ kV/cm

NO BREAKDOWN TAKES PLACE!

Understanding of the LC increase observation: how charge affects SiO₂ conductivity (I)

Charging of SiO₂ layers, even quite thick as our case (O(100nm)), through LAr ionization is known from literature and the estimated amount of charge collected is below the breakdown charge. So:

Collection of charge --> affect SiO₂ conductivity
 Higher increase of LC with irradiation closer to the PL--> effect depends on the rate of charge collected that depends on IR

 $\begin{aligned} \frac{\Delta(LC)_{a\,fter}^{pos,1}}{\Delta(LC)_{a\,fter}^{pos,2}} &= 3.5 \quad \frac{IR(LAr)^{pos,1}}{IR(LAr)^{pos,2}} = 3.5 \quad \frac{\Delta(LC)_{a\,fter}^{pos,2}}{\Delta(LC)_{a\,fter}^{pos,3}} = 2.6 \quad \frac{IR(LAr)^{pos,2}}{IR(LAr)^{pos,3}} = 3.3 \\ \frac{\Delta(LC)_{bulk}^{pos,1}}{\Delta(LC)_{bulk}^{pos,2}} &= 1.1 \quad \frac{IR(Ge)^{pos,1}}{IR(Ge)^{pos,2}} = 1.15 \end{aligned}$

Understanding of the LC increase observation: how charge affects SiO₂ conductivity (II)

*how charge affects SiO*₂ *conductivity (II)* A possibile explanation--> low level pretunneling leakage currents due to charging and discharging of traps generated inside the SiO₂ by high voltage stress**

As in our case, Δ LC depends on time (fluence of charge) the stress is applied -->

but a) the rapid increase in the current is due to Fowler-Nordheim tunneling effect that requires E≈5 MV/cm that is not our case. b) In known cases (thin SiO2, high E), a discharging of stress generated traps is observed c) Trap density $\propto^3\sqrt{}$ fluence (e⁻) And LC \propto trap density \Rightarrow LC $\propto^3\sqrt{}$ fluence (e⁻) But our observed increase

is steeper

**"Correlation of Stress-Induced Leakage Current in Thin Oxides with Trap Generation Inside the Oxides"
D.J. Dumin & J.R. Maddux, *IEEE Tran Elec Dev, Vol 40 No 5 May 1993*"Low-level leakage currents in thin silicon oxides films"
D.J. Dumin et al., *J. Appl. Phys. 76(1), 1 July*

Understanding of the LC increase observation: how charge affects SiO₂ conductivity (III)

Following what is available in the literature, the Fowler-Nordheim tunneling does not seem reasonably responsible for experimentally observed ΔLC since SiO₂ is too thick and the charge built up field is not strong enough.

 \Rightarrow The 2nd hypothesis: either

a) The groove is the only region where a semiconductor (intrinsic Ge)/SiO₂ exists and an interface trapped charge could be present. In such a case tunneling can proceed

indirectly with the assistance of interface

traps. The magnitude of the current density associated with tunneling processes has been found to obey an *empirical relationship* given by J~F²exp{-K/F} Where F-->E magnitude K=19-23 MV/cm

empirical value for Si-SiO₂*

For Ge-SiO₂ ??????? (*Introduction to semiconductors devices, K.F. Brennan)

Understanding of the LC increase observation: how charge affects SiO, conductivity (IV)

...or

In deposited insulators which contain a high density of structural defects, these can cause additional energy states close to the band edge. This is the Poole-Frenkel emission, but it involves the field-enhanced thermal emission of electrons from trap states into the conduction band of the insultor. This phenomenon has been reported for 5 nm thick insulator (especially Si_3N_4)***

→ This phenomenon is not a good candidate to explain the observed radiation induced leakage current increase due to

- a) Too low temperature (T(LAr))
- Thickness of SiO₂ b)

**"Trap-assisted conduction in nitrided-oxide and re-oxidized nitrided-oxide n-channel metal-oxide-semiconductor field-effect transistors" S. Fleisher et al. J. Appl. Phys. 73 (12), 15 June 1993 19

The most likely and reasonable mechanism to explain increase of SiO₂ conductivity

Browsing through what is available in literature (relative to experimental conditions quite different from our situation) and comparing some data, mainly the value of the E field generated by collected, we can likely exclude tunneling through SiO₂. The most reasonable explanation turns out to be a SURFACE CONDUCTIVITY (the driving potential difference being 0/+4 kV or -4 kV/0 between the opposite side of the groove).

Experimental indications for a surface conductivity of the PL (I)

1. The Δ LC following γ -irradiation is much steeper for prototype (large PL) compared to GTF-1 (PL only in the groove).

Comparison between rates of increase of γ -ray induced LC in prototype and in GTF-1 both in +HV configuration: Prototype $\rightarrow \Delta LC = 40 \text{ pA/d}$ GTF-1 $\rightarrow \Delta LC = 1.4 \text{ pA/d} \Rightarrow \text{a factor of } \approx 30 \text{ lower than in prototype!}_{21}$

Understanding of difference between γ-ray induced LC(+HV) and LC(-HV)

A possible explanation of this: Since in the groove the charge is collected only from inside the groove

Our idea: conductivity (σ) depends on the radial distribution of charge collected @ PL and the σ in the groove is affected by the tails of charge distribution both on the internal and external surfaces of PL. This could explain the faster increase of LC with -HV than with +HV observed with both detectors:

+HV-HVPrototype $\Delta LC = 40 \text{ pA/d}$ $\Delta LC = 26 \text{ pA/h}$ GTF-1 $\Delta LC = 1.4 \text{ pA/d}$ $\Delta LC_0 = 3.5 \text{ pA/h}$

Difference in steady LC (ΔLC_0) between +HV and -HV configuration, both in prototype and in GTF1

✓ Prototype +HV irradiation -HV → +HV $LC_0 = 265 \text{ pA} \rightarrow LC_0 = 100 \text{ pA} \Rightarrow \Delta LC_0 = 165 \text{ pA}$ ↓ irradiation with ⁶⁰Co $LC_0 = 340 \text{ pA} \leftarrow LC_0 = 145 \text{ pA} \Rightarrow \Delta LC_0 = 195 \text{ pA}$

✓ GTF-1 -HV irradiation +HV → -HV $LC_0 = 9 \text{ pA}$ → $LC_0 = 22 \text{ pA}$ ⇒ $\Delta LC_0 = 13 \text{ pA}$ ↓ irradiation with ⁶⁰Co $LC_0 = 11 \text{ pA}$ ← $LC_0 = 35 \text{ pA}$ ⇒ $\Delta LC_0 = 24 \text{ pA}$

ΔLC_0 :

• is observed with both detectors (large PL and PL only in the groove);

• It is an istantaneous phenomenon that cannot depend on charge collection since that has no time to take place;

• $\Delta LC_0 \approx 1.5 LC_0(+HV)$ but it increases after irradiation --> depends on previous "history" of the detector.

A possible explanation: different dispersion of current through LAr between +/-HV configuration and/or effect of LAr polarization (ϵ_r =1.5)

Summary and Conclusions (I)

- LAriiLC consists mainly of three parts:
 - 1. Charge production by LAr ionization produced by γ-source;
 - 2. Charge transportation and collection at the detector surfaces;
 - 3. Effect of collected charge on SiO₂ conductivity
 - → there is no available literature for similar cases. Anyhow from comparison between literature and data, a surface conductivity seem to be the most reasonable explanation for our ∆LC, but a more detailed description is still missing:
 - a) How can charge built up in the PL surrounding the groove affect SiO₂ conductivity in the groove?
 - b) Is really a surface phenomenon or could some kind of "trap assisted tunneling" take place?
- LAriiLC can qualitatively explain
 - γ-induced LC both in prototype and GTF-1 (operated naked in LAr)
 - Higher increase of LC with irradiation closer to the PL
 - $\Delta LC(+HV) < \Delta LC(-HV)$
 - ΔLC(GTF-1)<< ΔLC(prototype)

Summary and Conclusions (II)

Anyhow it cannot still explain

- difference in LC (ΔLC₀) between +HV and -HV configuration, both in prototype and in GTF1 --> this is probably due to a completely different electric mechanism related to different
- dispersion of current through LAr between +/-HV configuration and/or effect of LAr polarization (ϵ_r =1.5).
- Irradiation @ 2000V ≈ @ 4000V --> the only reasonable explanation could be an overestimation of effective volume for charge collection in case of bias at 4000 V. (??????)
- The LAriiLC is reversible and UV seems to be the curing agent.
- γ -induced LC is not observed when operating the detector in LAr without any passivation layer. Is the very preliminary result (2 day irradiation) on LN₂ starting to confirm that LAr, with its ionization, is responsible of Δ LC?

 Suggestions for a further understanding of the phenomenon and improving of the model:

--> electrometric measurement of the SiO₂ charge;

--> a new detector with PL apart in the groove to understand if the PL in the groove is responsible for γ -ray induced LC.