²²²Rn emanation measurement of the GERDA cryostat

<u>H. Simgen</u>, K.T. Knöpfle, B. Schwingenheuer, G. Zuzel

²²²Rn emanation of the GERDA inner detector

- All ²²²Rn emanated from inner detector (lock + cryostat) can create background.
- Check of
 - Individual components (Grzegorz's talk on Wednesday)
 - Fully assembled lock (Future)
 - Inner vessel of cryostat (this talk)
- Tolerable ²²²Rn emanation rate (GSTR-07-020):
 10⁻⁴ cts/(kg·keV·y) ↔ ~8 mBq
 - Assumption: Homogeneous ²²²Rn distribution in LAr

Homogenous distribution and convection

- Little convection in detectors with large amounts of liquids (BOREXINO, CTF, KamLAND)
 - ²²²Rn emanated close to surfaces stays there (until it decays).
- Situation is different for cryogenic liquids
 - Non-perfect insulation \Rightarrow permanent heat input
 - Permanent convection expected!
- Homogeneous distribution is not conservative

Procedure for the ²²²Rn test

- 1. Evacuating to ≤ 1 mbar
- 2. Filling with ²²²Rn-free nitrogen to ~1 bara
- 3. Evacuating again to ≤ 1 mbar
- 4. Filling with ²²²Rn-free nitrogen to ~2.6 bara
- 5. Waiting few days for ²²²Rn accumulation
- 6. Extraction of 2 samples (few 10 m³ (STP) each)
- 7. Scaling to entire volume

Preparation of the cryostat

- Construction of inner vessel finished including
 - Pressure test
 - Cleaning (pickling and passivation)
- Temporary carbon steel flange equipped with
 - Helicoflex gasket
 - VCR ports for MoREx / pressure gauge
 - ~2m tube inside
- Helium-leak test performed
 - Vessel left in evacuated state

Results

- 1st test (23 m³ (STP) of 169 m³ (STP)):
 ²²²Rn activity scaled to entire cryostat in saturation = (16.9 ± 1.6) mBq
- 2nd test (45 m³ (STP) of 146 m³ (STP)):
 ²²²Rn activity scaled to entire cryostat in saturation = (29.8 ± 2.4) mBq

Discussion

- Results not in agreement
 - Problem with measurement procedure?
 - Inhomogeneous ²²²Rn distribution?
- But ²²²Rn activity definitely >8 mBq
- Possible reasons:
 - Cleaning was not sufficient
 - Some dirt left in cryostat
 - It's normal for a tank of this size
 Welds! → see Grzegorz's talk on Wednesday

Status / Outlook

- Work done after ²²²Rn-test:
 - Cu-mounting test
 - Evaporation test
 - Another cleaning (using spray-ball)
- Future:
 - 2^{nd 222}Rn emanation test planned
 - Accumulation during transport to Gran Sasso (?)
- Improvements:
 - Mixing immediately before extraction

