Low-Noise JFET-CMOS Preamplifier for the GERDA Experiment

A. Kirsch, L. Gamer, J. Geist, T. Kihm, K.T. Knöpfle and B. Schwingenheuer MPI für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg

HK 39.14 Münster 2011

GERDA (GER manium Detector Array) @ LNGS

The project searches for the $0\nu\beta\beta$ decay of ⁷⁶Ge by using crystals made of isotopically enriched material as source and detector simultaneously. According to theory, this weakly interacting process would not only prove the neutrino to be a Majorana particle but also allow a direct measurement of the effective neutrino mass.

The Laboratori Nazionali del Gran Sasso is located in a mountain region about 150 km east of Rome and at the depth of 3800 meters water equivalent.

Schematic view of the experiment and a photo of three HPGe diodes. The charge sensitive preamplifier is placed inside a copper box 30 cm above the upper detector.

long signal cable, which connects

transistor of the preamplifier contains radiative coating

Characterization of Junction Gate Field-Effect Transistors¹

Investigated transistors:

BF862 (PHILIPS) LSK170A, -B, -C (LINEAR SYSTEMS) SK152 (SONY)

Experimental setup

- shunt jumpers to either connect the drain and gate terminal with the circuit or GND
- network analyzer HP4396B: to provide a test signal (sig in) and for read-out (sig out)
- metal box as protection against electro-magnetic radiation

Simplified circuit diagram

- 1st amplifier stage by JFET (biased via V_{in} and V_{GS})
- operating point can be adjusted by V_{in}
- 2nd amplifier stage by two op-amps (with battery driven power supply)

Drain Source Characteristic Curve

here: exemplary for transistor BF862

300 K

papage of the second state of the second state

er al Mithilitary fields destand the mention strends reprint the should be half be have

1.0

Frequency f [MHz]

1.5

0.5

 $_{DS} = 6 \text{ mA}$

 $I_{DS} = 15 \text{ mA}$

 $I_{DS} = 8 \text{ mA}$

Noise Measurements of the GERDA Preamplifier²

Experimental setup

- pulse generator to simulate the current pulses from the detector
- CC2: charge sensitive preamplifier used in GERDA (developed by Stefano Riboldi,
- Universita degli Studi di Milano)
- circuit board contains 3 channels
- ADC (Analog to Digital Converter) to digitize the analogue signals
- digital filter for signal processing
- again an outer metal covering serves as shielding against electro-magnetic radiation

Simplified circuit diagram

- calibration of the capacitance C_{FB}
- C_{det} to simulate the capacitance of the germanium detector
- op-amps: OPA211 and AD8652, both functional @ 77 K
- operating point is determined by V_{FET}

$$V_{DS} = \frac{2I_{DSS}}{V_p^2} \left([V_{GS} - V_p] V_{DS} - \frac{V_{DS}^2}{2} \right)$$

• saturation region: $I_{DS} = I_{DSS} (1 - V_{GS} / V_{p})^{2} (1 + V_{DS} / R_{DS})$

 I_{DSS} : saturation drain source current • resistance of drain source channel: $R_{\rm DS} = \left(d V_{\rm DS} / d I_{\rm DS} \right)$

Transfer Characteristic Curve • transconductance or amplification of the transistor:

$$g_m = (d I_{DS} / d V_{GS}) = \frac{2 I_{DSS}}{V_p^2} (V_{GS} - V_p)$$

• intersection with x-axis gives the pinch-off voltage $V_{\rm P}$

Noise Measurement

• measured data for spectral density:

$$v_{FET, data}(f) = \sqrt{\frac{v_{total}^2 - v_{without}^2}{(R_{FB} \cdot g_m)^2}}$$

 theoretical expected thermal noise of the drain source channel:

$$v_{FET,theo}(f) = 4 k T \cdot \left(\frac{2}{3 g_m}\right) \cdot \Delta f$$

77 K

1.5

2.0

0.5

1.0

Frequency f [MHz]

in good agreement

with datasheets

= 6 mA

 $I_{DS} = 8 \text{ mA}$

- $I_{DS} = 15 \text{ mA}$

Experimental Results

• table for gate source voltage $U_{GS} = 0 \vee$ and optimal noise values:

		300 K							77 K				
JFET	$I_{\rm DS}$	$I_{\rm DSS}$	$V_{\rm p}$	$R_{\rm DS}$	$g_{ m m}$	$ u_{\rm FET,data} $	$ u_{ m FET,theo} $	$U_{ m DS}$	$R_{\rm DS}$	$g_{ m m}$	$ u_{ m FET,data} $	$ u_{ m FET,theo} $	$U_{\rm DS}$
	[mA]	$\ $ [mA]	[V]	$[k\Omega]$	[mS]	$[nV/\sqrt{Hz}]$	nV/\sqrt{Hz}]	[V]	$[k\Omega]$	[mS]	$\left[\frac{nV}{\sqrt{Hz}} \right]$	$[nV/\sqrt{Hz}]$	[V]
BF862	≈ 14	12.1	-0.63	≥ 2.5	33.6	0.8	0.58	13.6	≥ 13.3	16.2	0.9	0.42	15.5
LSK170A	≈ 4	-	-0.34	-	20.0	1.2	0.72	9 <mark>.</mark> 8	-	-			-
LSK170B	≈ 10	9.2	-0.64	≥ 2.5	26.8	1.3	0.61	5 <mark>.</mark> 7	≥ 6.7	<mark>19.6</mark>	-	-	-
LSK170C	≈ 8	12.4	-0.60	≥ 1.5	<mark>3</mark> 1.6	1.5	0.74	0 <mark>.</mark> 5	≥ 2.2	24.8	1.1	0.42	20.0
SK152	≈ 23	-	-1.59	-	25.0	1.1	0.64	5 <mark>.</mark> 6	-	<mark>4</mark> 2.8	2.9	0.52	5.1
MX-11rc	≈ 15	15.3	-3.49	≥ 1.1	7.8	2.0	1.2	3.3	$\geq 0,74$	15.5	8.5	1.5	1.0

• characteristic properties and noise performances in good agreement with datasheet

- power dissipation $P = I_{DS} \cdot U_{DS}$ of the transistor causes heat input in LN₂ \rightarrow microphonic effects
- measured noise (in nV/ \sqrt{Hz}) is about 1.4 to 2.1 times higher than the calculated thermal noise of the FET \rightarrow additional noise from transistor, experimental setup
- for common-source amplifier: amplification depends on R_{DS} (in parallel to R_{D} of the GERDA preamplifier) $\rightarrow R_{\rm DS} \approx R_{\rm D} = 4.7 \, \rm k\Omega$

Most suitable transistors for the GERDA experiment: BF862 and LSK170B, -C!!!

[1] J. Geist, *Bachelor Thesis*, Max-Planck-Institut für Kernphysik, 2011

• further improvements of the experimental setup, e.g.: \rightarrow voltage divider \rightarrow smaller $R_{\rm D}$

 \rightarrow op-amp

[2] L. Gamer, Bachelor Thesis, Max-Planck-Institut für Kernphysik, 2011

