

Phasenraumfaktor und Kern-Matrixelemente für den

neutrinolosen doppelten Betazerfall in ⁷⁶Ge

Peter Grabmayr
Kepler Zentrum für Astro und Teilchenphysik

Kepler Center for Astro and Particle Physics

Eberhard Karls Universität Tübingen

Inhalt

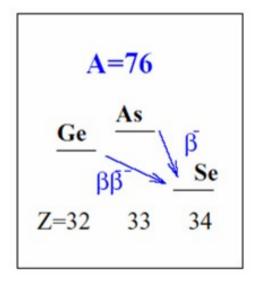
PHYSICAL REVIEW C 81, 028502 (2010)

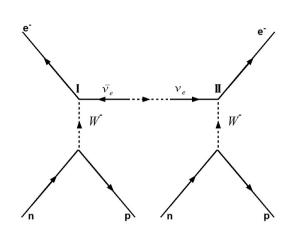
Conversion of experimental half-life to effective electron neutrino mass in $0\nu\beta\beta$ decay

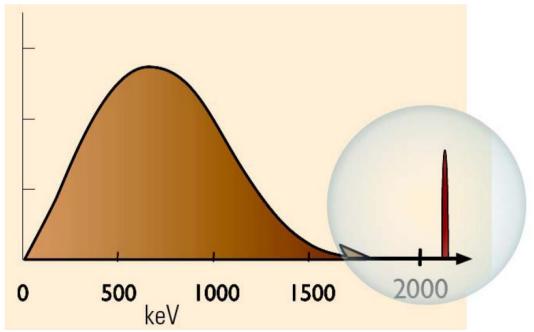
Anatoly Smolnikov*

Joint Institute for Nuclear Research, Dubna, Russia, and Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

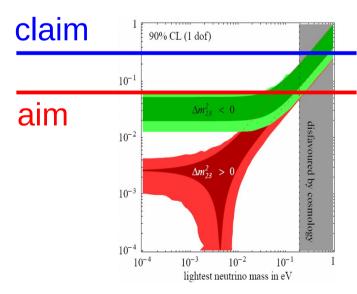
Peter Grabmayr


Kepler Center for Astro and Particle Physics, Eberhard Karls Universität Tübingen, Germany (Received 18 December 2009; published 23 February 2010)


- 0νββ Zerfall im ⁷⁶Ge
- $T_{1/2}$ und effektive Neutrinosmasse $< m_{\beta\beta} >$
- Erwartungen für GERDA
- andere Unsicherheiten


Bonn, 15. März, 2010 P. Grabmayr

$0\nu\beta\beta$ Zerfall in 76 Ge



Majorana Neutrinos?

Masse der Neutrinos?

Hierarchie?

Bonn, 15. März, 2010

some formulas

$$\frac{1}{T_{1/2}} = G^{0\nu} |\mathcal{M}^{0\nu}|^2 \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \right|^2 = F^{0\nu} |\mathcal{M}^{0\nu}|^2 m_{\beta\beta}^2$$

Kern-Matrixelement M^{0v} : V. Rodin, F. Simkovic, A. Faessler

Phasenraumfaktor:

$$G^{0\nu} = G_{01} = \frac{a_{0\nu}}{(m_e R_A)^2 ln2} \int d\Omega_{0\nu} \ b(\varepsilon_1, \varepsilon_2)$$

Konstante: $a_{0\nu} = \frac{(Gg_A)^4 m_e^9}{64-5}$,

Integrand: (rel. Fermi-Faktor F) $b(\varepsilon_1, \varepsilon_2) = F_0(Z, \varepsilon_1) F_0(Z, \varepsilon_2)$

$$b(\varepsilon_1, \varepsilon_2) = F_0(Z, \varepsilon_1) F_0(Z, \varepsilon_2)$$

Differential:

$$d\Omega_{0\nu} = \frac{p_1 \varepsilon_1 \, p_2 \varepsilon_2}{m_e^5} \, \delta(\varepsilon_1 + \varepsilon_2 + M_f - M_i) \, d\varepsilon_1 d\varepsilon_2 \, d\cos\theta$$

$$G^{0\nu} \sim g_A^4 \frac{1}{R_A^2}$$

radius

R=3,108x10⁻³
$$A^{1/3}$$
 / m_e ~ 1.2 $A^{1/3}$

Doi, Kotani, Takasugi

Prog.Theo.Phys.S. 83(1985)

 $R = 1.1 A^{1/3}$

Faessler

 $R = 1.2 A^{1/3}$

Suhonen, lachello, Poves

⁷⁶Ge

Author	Ref.	r_0	$G^{0\nu} \times 10^{15}$	$\mathcal{M}'^{0 u}$	$s \times 10^{25}$	Comments
		[fm]	$[y^{-1}]$		$[eV^2 \times y]^{-1}$	
Claim	[3]	1.2	6.31	4.22	4.30	
Pantis	[11]	1.1	7.93	1.34	0.55	np pairing
Simkovic	[12]	1.1	7.93	2.80	2.38	RQRPA
Simkovic	[12]	1.1	7.93	3.60	3.94	RQRPA
Rodin	[13]	1.1	7.93	3.92	4.67	RQRPA
Simkovic	[14]	1.1	7.93	3.33	3.37	Jastrow ^a
Simkovic	[14]	1.1	7.93	4.68	6.65	Jastrow ^b
Simkovic	[14]	1.1	7.93	3.92	4.67	UCOM ^a
Simkovic	[14]	1.1	7.93	5.73	9.97	UCOM ^b
Caurier	[15]	1.2	6.31	2.22	1.19	SM
Barea	[16]	1.2	6.31	5.47	7.23	IBM2-I
Barea	[16]	1.2	6.31	4.64	5.20	IBM2-II
Suhonen	[18]	1.2	6.31	2.78	1.87	Jastrow ^c
Suhonen	[18]	1.2	6.31	2.28	1.26	Jastrow ^d
Suhonen	[18]	1.2	6.31	4.11	4.08	UCOM ^c
Suhonen	[18]	1.2	6.31	3.23	2.52	UCOM ^d
Menendez	[20]	1.2	6.31	3.00	2.17	SM gcn ^e
Menendez	[20]	1.2	6.31	3.52	2.99	SM rge
Simkovic	[21]	1.1	7.93	5.44	8.99	RQRPA ^e
Simkovic	[21]	1.1	7.93	4.07	5.03	RQRPA ^{ae}
Simkovic	[21]	1.1	7.93	6.64	13.39	RQRPA ^{be}

Hilfsvariable s

$$\frac{1}{T_{1/2}} = G^{0\nu} |\mathcal{M}^{0\nu}|^2 \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \right|^2 = F^{0\nu} |\mathcal{M}^{0\nu}|^2 m_{\beta\beta}^2$$

$$s = G^{0\nu} |\mathcal{M}'^{0\nu}|^2 m_e^{-2} [eV^2 y]^{-1}$$

$$\langle m_{\beta\beta} \rangle = (s T_{1/2})^{-1/2}$$

Renormierung auf gA

eff. Neutrinomassen in [meV]

$$\langle m_{\beta\beta}\rangle = (sT_{1/2})^{-1/2}$$

Author	Ref.	$s \times 10^{25}$		$T_{1/2} \times 10^{-25}$			
		$[eV^2 \times y]^{-1}$	1.2	2.2	3	15	20
			Claim	Pha	ise I	Pha	se II
Menendez	[20]	2.99	528	390	334	149	129
Suhonen	[18]	4.08	452	334	286	128	111
Rodin	[13]	4.67	422	312	267	119	103
Barea	[16]	7.23	340	251	215	96	83
Simkovic	[21]	8.99	304	225	193	86	75

Bonn, 15. März, 2010 P. Grabmayr

recommendation

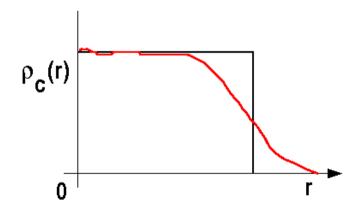
Experimental sensitivity	Ref.	$T_{1/2}$ [10 ⁻²⁵ y]	$\langle m_{etaeta} angle \ [{ m eV}]$
Claim	[3]	1.2	0.30-0.53
GERDA Phase I	[1]	2.2	0.23 - 0.39
GERDA Phase II	[1]	15.0	0.09 - 0.15

[3] H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B586 (2004) 198

^[1] GERDA proposal http://www.mpi-hd.mpg/gerda/proposal.pdf

offene Fragen

Fermi Funktion F_0 & Integrand $b(\varepsilon_1, \varepsilon_2)$


$$b(\varepsilon_1, \varepsilon_2) = F_0(Z, \varepsilon_1) F_0(Z, \varepsilon_2)$$

Annahme: 1) 2e-Emission instantan

2) Distortion durch dieselbe

Z-Verteilung

F₀ mit 'harte Kugel' - Verteilung berechnet

Dirac GI. in Potential V(r) gemäß $\rho_c(r)$

Doi etc.: nicht wichtig (wenige %) (vgl. in ¹²B)

Bonn, 15. März, 2010 P. Grabmayr

Zusammenfassung

Phasenraumfaktor mit vielen Näherungen berechnet

Primakoff & Rosen NR Näherung 'harte Kugel' kein Screening

Hier nur Phasenraumfaktor für Majorana-Anteil!!

Nicht nur Kern-Matrixelemente haben Unsicherheiten

GERDA

beginnt zu messen (S. Schönert HK13.1, Di 8:30) Phase II wird $< m_{\beta\beta} > \sim 100 \text{ meV}$ erreichen

Bonn, 15. März, 2010