

Development of a low neutron emission calibration source for the GERDA experiment

(α-n) reaction

Compound nucleus,

deexcited by n

emission

M.Tarka a, L.Baudis a, E.Bellotti d, G.Bruno c, C.M.Cattadori e, R.Dressler b, R.Eichler b, S.Fattori c, A.D.Ferella a, F.Froborg a, U.Graf f, R.Santorelli a, D.Schumann b

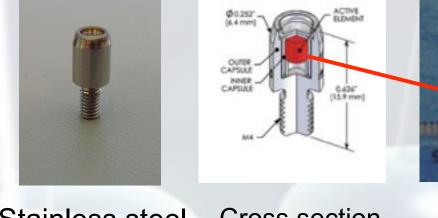
^a University of Zurich, ^b Paul Scherrer Institute, ^c L'Aquila University, ^d University Milano Bicocca and INFN, ^e INFN Milano Bicocca and University, ^f Isotope Products GmbH Berlin

Abstract

GERDA is an experiment under construction at the LNGS (Laboratori Nazionali del Gran Sasso, 3500 m.w.e.) in Italy. It will use an array of enriched ⁷⁶Ge detectors to search for the neutrinoless double-β decay. This requires a minimized and well understood background. To reach a sensitivity of m,< 0.13 eV in Phase II for example, a background rate of **B** ≤ **1·10**⁻³ **cts/(kg·y·keV)** is required. In addition to the gamma background induced by cosmic rays and natural radioactivity, neutrons from spontaneous fission and (α-n) reactions can provide a considerable contribution. ²²⁸Th has been established as a good calibration source candidate for GERDA due to its γ-emission in the region of interest around Q_{gg} = 2.04 MeV. The most interesting line for energy calibration is the 2.6 MeV line and its single escape peak at 2.1 MeV.

This work investigates the significance of the (α-n) neutron background coming from a ²²⁸Th calibration source due to its intrinsic components under the assumption that the source will be placed permanently in the GERDA-setup. For this scenario a parking position of up to 3.5 m above the detector array during data taking is assumed. For calibration runs, the source will be moved by remote control down to the detector array. First, the neutron rate from a commercial 228Th source was estimated using the software package SOURCES4mv. Subsequently an alternative source production method has been developed and tested in order to minimize the neutron yield.

Commercial ²²⁸Th source


Commercially available sources for cryogenic applications consist of a porous ceramic contained inside a sealed stainless steel capsule, with the ceramic saturated with the isotopes. α particles emitted by ²²⁸Th interact mainly with low-Z nuclides through $(\alpha-n)$ reactions resulting in a neutron flux. As the ceramic is in direct contact with the radionuclides, it is the most relevant material in terms of neutron production.

Example: ²²⁸Th in a NaAlSiO₂ ceramic

Assumptions:

- homogenously distributed

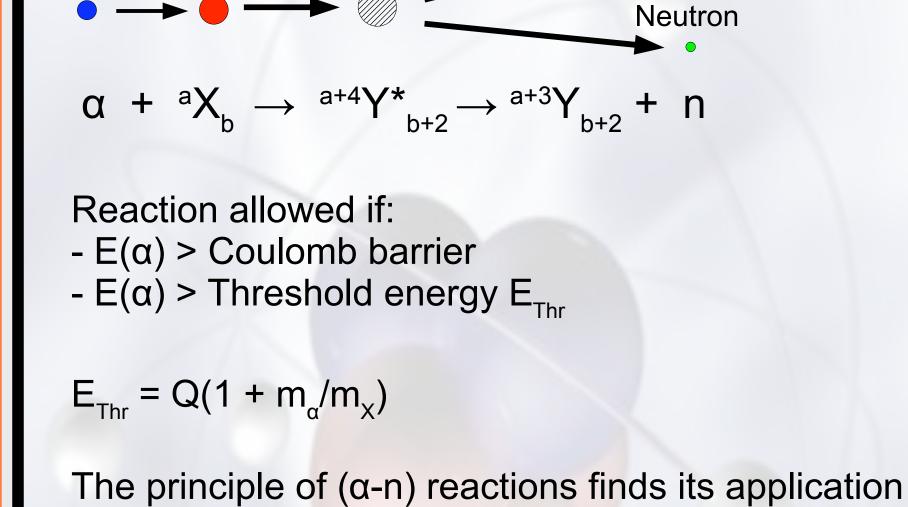
- no impurities involved

Cross section Stainless steel of the source encapsulation

 $E_{mean} = 1.45 \text{ MeV}$

NaAlSiO₂ ceramic

 $E_{g}(^{228}\text{Th-chain}) = 5.2 \text{ MeV} - 8.8 \text{ MeV}$


Isotope	²³ Na	²⁷ A I	²⁸ Si	²⁹ Si	³⁰ Si	¹⁶ O	¹⁷ O	¹⁸ O
E _{Thr} [MeV]	3.48	3.03	9.25	1.74	3.96	15.17	< 0.1	0.85
Nat.abund. [%]	100	100	92	4.68	3.09	99.76	0.04	0.2

The neutron rates and spectra resulting from $(\alpha-n)$ reactions in a NaAlSiO₂ ceramic containing ²²⁸Th were calculated with SOURCES4mv. The sum spectrum was implemented in a MC simulation in order to estimate the neutron-induced background in the energy range around $Q_{gg} = 2.04 \text{ MeV}.$

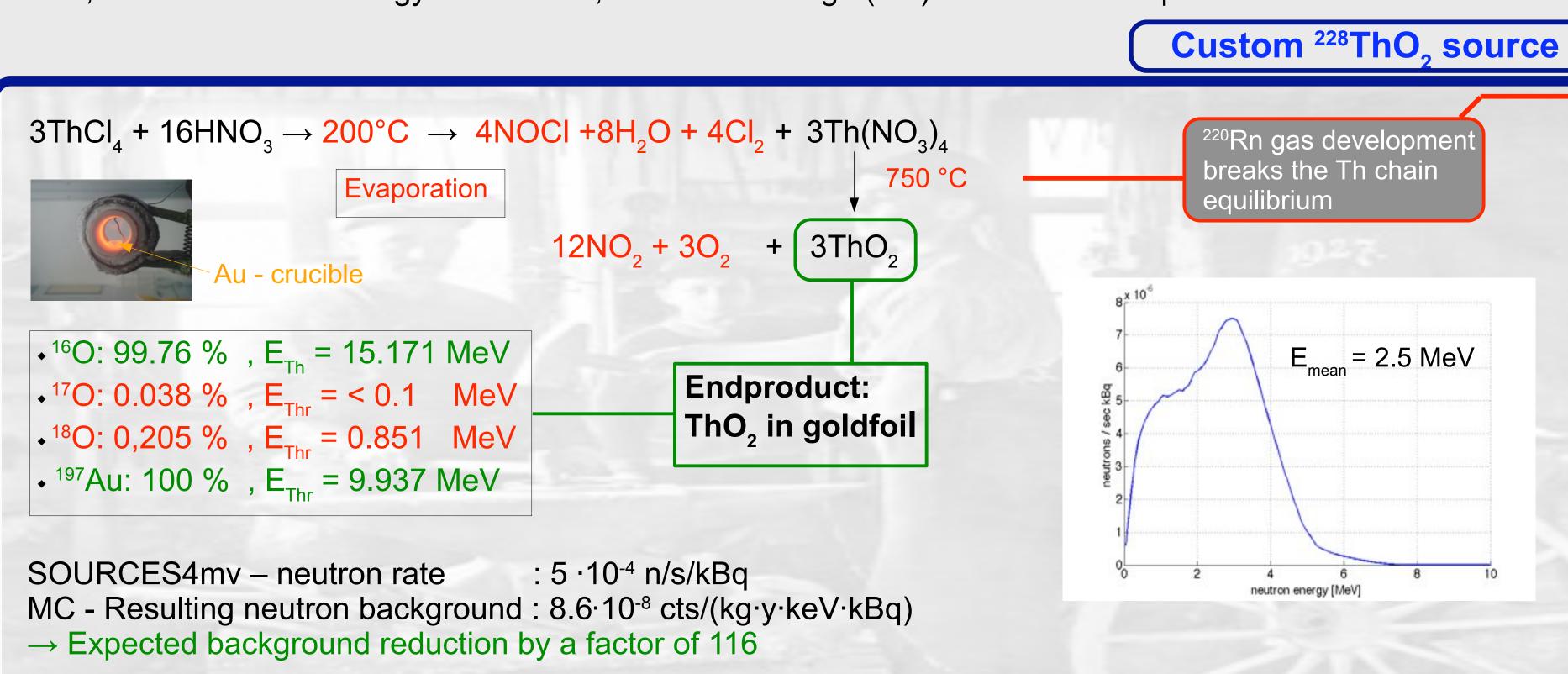
: 3.8·10⁻² n/s/kBq SOURCES4mv – neutron rate

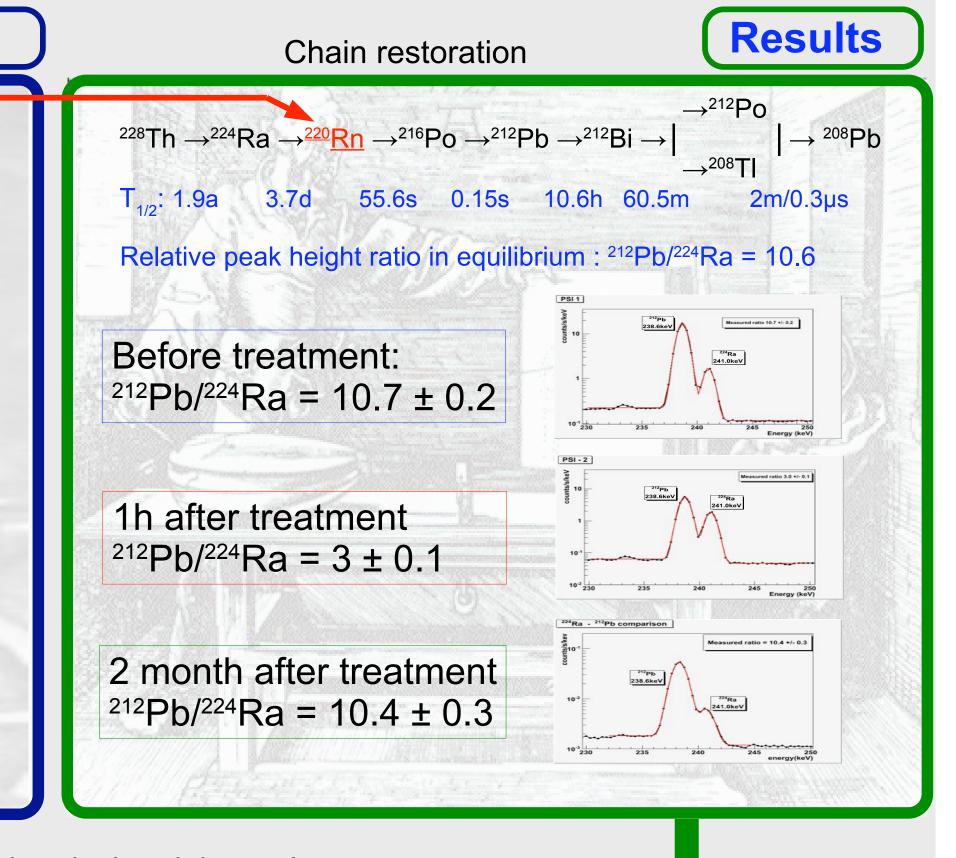
MC - Resulting neutron background: 1·10⁻⁵ cts/(kg·y·keV·kBq)

B ≤ 1·10⁻³ cts/(kg·y·keV) GERDA – total background goal

Compound nucleus,

excited state

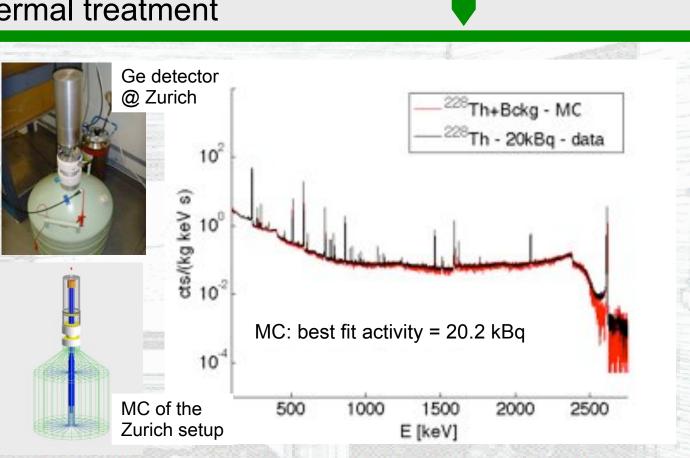

in commercialy available neutron sources such as ²⁴¹Am-Be where α particles emitted by ²⁴¹Am produce neutrons in Be by the reaction:


$${}^{4}\alpha_{2} + {}^{9}Be_{4} \rightarrow {}^{12}C_{6} + n$$

For the GERDA experiment, such reactions must be supressed in order to minimize the neutron-induced background.

A reduction of the neutron background can be achieved by replacing the ceramic with materials exhibiting higher threshold energies for (α-n) reactions. This has been done by chemical and thermal treatment of ²²⁸ThCl₄ in a 1M HCl solution resulting in ThO₂. The process took place in a crucible made from a ~100µm thick gold foil. Gold, with a threshold energy of ~10 MeV, does not undergo (α-n) reactions in the presence of ²²⁸Th α-radiation and is thus a good matrix material for the ThO₂.

X 0.6-


20kBq ThO₂ source - Neutron measurements

The neutron rate produced by the ²²⁸ThO₂ ≥ source was measured with a ³He ³He detector detector located in the LNGS laboratory. The neutrons are thermalized to ~0.03 eV using 12.5 cm of PE between the source and the ³He tube and counted via the energy release of 764 keV in the ³He(n,p)³H reaction. Detector efficiency:

 $\varepsilon_{\text{tot}} = \varepsilon_{\text{geom}} \cdot \varepsilon_{\text{therm}} \cdot \varepsilon_{\text{capt}} = 0.2 \%$ $\varepsilon_{\text{geom}}$ = geometrical eff. = n-thermalization eff. in PE ε_{capt} = therm. n capturing eff. in 3 He Measured n-rate: $R = 8.5 \pm 1.5 \cdot 10^{-4}$ n/s/kBq SOURCES4mv : $R = 5 \cdot 10^{-4}$ n/s/kBq

Activity loss during chemical and thermal treatment

The activity loss during the treatment of the ²²⁸ThCl₄ solution has been estimated by comparing the ²²⁸Th γ-spectra, taken with a 4x4cm Ge detector to Monte Carlo simulations. The nominal activity of the ²²⁸ThCl₄ solution was given at 20 kBq, and the best fit between data and Monte Carlo simulations resulted in an activity of 20.2 ± 0.4 kBq.

→ no measured activity loss during the treatment of the ²²⁸ThCl_x solution.