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Motivation

Physics bellow Schwinger limit

Heisenberg-Euler corrections to
Maxwell’s Equations*

® Relevance for extreme astrophysical scenarios!?

@ Effect on laser properties as we reach Schwinger
limit?

@ Extract observable consequences of fundamental
QED predictions.

@ ELI energies will allow us to probe the dynamics of
Quantum Vacuum.

V)l

beamlines

*WV. Heisenberg and H. Euler, Z. Physik 98,714 (1936).

Electron-positron fluctuations give rise to an effective
polarisation and magnetisation of the vacuum which
can be treated in an effective form as corrections to
Maxwell’s equations.

L=Luy+Lyge+ LD

Valid for static inhomogeneous fields such that

2
2.3 __ mc
Eq = meg We = 5

Effectively, we obtain a highly non linear, non
dispersive vacuum

Higher order corrections include spatial and
temporal derivatives of these corrections. May be
neglected for:
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Heisenberg-Euler modified equations

QED corrections to Maxwell’s

: Developed Maxwell’s Equations
equations

® Non linear polarisation and magnetisation.

® Dependence on EM invariants.

@ Relative ordering allow to treat these
terms as perturbations to Linear ME.
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OSIRIS 2.0

O0S1ris | osiris framework
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Massivelly Parallel, Fully Relativistic
Particle-in-Cell (PIC) Code
Visualization and Data Analysis Infrastructure | | e
Developed by the osiris.consortium | A .' | ' |
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New Features in v2.0 @9
. Bessel Beams

p

Binary Collision Module

Tunnel (ADK) and Impact lonization
Dynamic Load Balancing

PML absorbing BC

Optimized higher order splines
Parallel /O (HDFS)

Boosted frame in |/2/3D

QED module + Merging algorithm

http://cfp.ist.utl.pt/golp/epp/
UCI'A http://exodus.physics.ucla.edu/ QED Maxwell Solver
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OSIRIS PIC LOOP
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Integration of equations of motion:
moving particles

Deposition:
calculating current on grid

Interpolation:
evaluating force on particles

(E> B)z' — Fp

(X7 u)p — j’L

Integration of field equations:
updating fields

TS EEEEEEEEEEEEDN EEEEE

Fields are Integrated self consistently
with QED vacuum non linear terms
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NL Scheme requires field values at all grid points

Standard Yee Solver Spatial Grid 2D visualisation

@ advance B field At2

@ advance E field At

@ advance B field another At/2

Main features of linear Solver

® Uses Faraday’s and Ampere’s Equation rather
than wave equation to advance fields.

@ Staggered grid: E & B fields are decentered from
each other allowing second order precision.

@ Linear coupling between fields allows
straightforward temporal evolution.

Non Linear Solver

® Ampere’s law is corrected by nonlinear
polarisation & magnetisation.

® EM invariants couple all components of

all fields = necessary to calculate

them at all grid points.
® Temporally the loss of linearity does not allow
fields to be straightforwardly advanced.
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NL Yee Solver

Integration of fields

At

Interpolate fields in

Linear Yee Scheme”  — space

(predicted quantities)

Eiij+1/2 Bij
Corrected Faraday law . EM Invariants
Recursive loop for

““l.l...‘
.

Convergence ‘

Advance E field w/ —
nonlinearities L Polarisation &

(modified Ampere) Magnetisation
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Strong static field changes vacuum refractive index w

With Static Electric Field:*

; A
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*Della Valle F, et.al, arXiv:1301.4918 [quant-ph]

E2
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Counter propagating plane waves give rise to HHG W

AANANAA . AAAAAN
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k=kex k='kex

In the absence of NL

E, = Ey(cos(x —t) 4 cos(x + t))
B, = By(cos(x +t) — cos(x — t))

We would simply have a standing wave

The first EM invariant couples both fields leading to NL
polarisation and magnetisation — generation of higher
harmonics

0
Py( ) ~ 2¢(cos(3x — t) + cos(x — 3t) + ...)

Do the QED corrections change the dynamics?

Study the interaction between two counter
propagating photons in the presence of HE non
linearities!

*Source: ELI Consortium; http://www.eli-laser.eu/highfieldphysics.html

Vacuum fluctuations™ Third harmonic

|
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Analytical solution in I D setup

Theoretical Analysis

E=FEy+ Fh1+ Es+ ... 0> 0>
5 5 Elzsl(xvt)
B=By+ B, +By+... dzr* Ot

Fourier Transform yields easier
comparison

With the source term given by:

S(z,t); = 166 E} cos(t) cos(x)(3 cos(2t) — cos(2x)) EW(k = 1) = 46E3t sin(t) + 3¢E3 sin(t) sin(2¢)
Formally, the solution is given by: E(l) (k _ 3) ZA—.SES’ Sin(t) Sin(2t)

L gt
Ey(z,t) = / / dt'de’G(x, o', t,t")S (2, 1)
o Jo

The first order correction to the field becomes:

Expression for the amplitude of a given (odd) harmonic

Simulations show generation of odd harmonics
in the fields, with the following relative amplitude

E(k=2n+1)= (EX)"E(k=1)
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Simulation results match theoretical predictions

|FFT (E) |
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2D Results - Beams with different polarisations

- FeiBs FFT (€, Ey)
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Setup with 2 counter propagating Gaussian Fourier transform of beams before
pulses polarised in x2 and x3 respectively. nonlinear interaction.
ao = 50
E=1.0x107
A= 10x10-¢
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2D Results - HHG for both fields
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Odd Harmonics are generated for fields in both directions!
Relative amplitude of FFT seem to agree with ID prediction
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2D Results - Perpendicular beam collision

(E,.E,) |FFT (E,)|
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Setup with 2 Gaussian pulses propagating in Fourier transform of beam before nonlinear
P P propagating
perpendicular directions interaction.
ao = 100
E=1.0x10°
A= 10x10"*m
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k(x,) [1/(c /)]

|FFT (E,)| |FFT (E,) |
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Combination of odd and even harmonics is
generated; After interaction, imprint is left in both
pulses as they now freely propagate.




Conclusions

. New multi-dimensional Maxwell QED Solver implemented in OSIRIS
® Modified Yee scheme includes nonlinear polarisation and magnetisation terms due

to ee” fluctuations
® Nontrivial solver requires evaluation of EM fields at all grid points and a recursive

loop to advance them in time

Simulations in excellent agreement with theoretical predictions

® Birefringence of vacuum verified and present in many setups.

@® Counter propagating plane waves: results in |ID in perfect agreement with theory
® 2D counter propagating pulses reveals expected qualitative behaviour.

Future work

® Broad range of experimental 2D setups may be tested

@ Can these corrections alter plasma dynamics in extreme environments?
@ 3D generalisation to verify predictions available in literature.
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