QED multi-dimensional vacuum polarisation solver

P. Carneiro

T. Grismayer, R.A. Fonseca,
L.O. Silva

GoLP
Vacuum nonlinearities

Instituto de Plasmas e Fusão Nuclear Instituto SuperiorTécnico Lisbon, Portugal
http://epp.ist.utl.pt

Motivation

Physics bellow Schwinger limit

Heisenberg-Euler corrections to Maxwell's Equations*

Electron-positron fluctuations give rise to an effective polarisation and magnetisation of the vacuum which can be treated in an effective form as corrections to Maxwell's equations.

$$
\mathcal{L}=\mathcal{L}_{\mathcal{M}}+\mathcal{L}_{H E}+\mathcal{L}_{D}
$$

Valid for static inhomogeneous fields such that

$$
\begin{array}{ll}
E \ll E_{S} & \omega \ll \omega_{c} \\
E_{S}=\frac{m^{2} c^{3}}{e \hbar} & \omega_{c}=\frac{m c^{2}}{2 \hbar}
\end{array}
$$

Effectively, we obtain a highly non linear, non dispersive vacuum

Higher order corrections include spatial and temporal derivatives of these corrections. May be neglected for:

$$
\omega \ll \omega_{c} \frac{E}{E_{S}}
$$

Heisenberg-Euler modified equations

QED corrections to Maxwell's equations

Developed Maxwell's Equations

$$
\frac{1}{\mu_{0}} \vec{\nabla} \times \vec{B}=\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}+\frac{\partial \vec{P}}{\partial t}+\vec{\nabla} \times \vec{M}
$$

$$
\frac{\partial \vec{B}}{\partial t}+\vec{\nabla} \times \vec{E}=0
$$

$\vec{D}=\epsilon_{0} \vec{E}+\vec{P} \quad \vec{H}=\frac{\vec{B}}{\mu_{0}}-\vec{M}$
$\vec{P}=\xi\left(2\left(E^{2}-c^{2} B^{2}\right) \vec{E}+7 c^{2}(\vec{E} \cdot \vec{B}) \vec{B}\right)$
$\vec{M}=-\xi c^{2}\left(2\left(E^{2}-c^{2} B^{2}\right) \vec{B}-7(\vec{E} \cdot \vec{B}) \vec{E}\right)$

Key Features

- Non linear polarisation and magnetisation.
- Dependence on EM invariants.
- Relative ordering allow to treat these terms as perturbations to Linear ME.

OSIRIS 2.0

osiris
v2. 0
osiris framework
Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code Visualization and Data Analysis Infrastructure
Developed by the osiris.consortium

$$
\Rightarrow \quad U C L A+I S T
$$

Ricardo Fonseca: ricardo.fonseca@ist.utl.pt Frank Tsung: tsung@physics.ucla.edu
http://cfp.ist.utl.pt/golp/epp/
http://exodus.physics.ucla.edu/

New Features in v2.0

- Binary Collision Module
- Tunnel (ADK) and Impact Ionization
- Dynamic Load Balancing
- PML absorbing BC
- Optimized higher order splines
- Parallel I/O (HDF5)
- Boosted frame in $1 / 2 / 3 \mathrm{D}$
- QED module + Merging algorithm
- QED Maxwell Solver

OSIRIS PIC LOOP

osiris
 v2. 0

Interpolation: evaluating force on particles
$(\mathbf{E}, \mathbf{B})_{i} \rightarrow \mathbf{F}_{p}$

Integration of equations of motion: moving particles

$$
\mathbf{F}_{p} \rightarrow \mathbf{u}_{p} \rightarrow \mathbf{x}_{p}
$$

Integration of field equations:

updating fields
$(\mathbf{E}, \mathbf{B})_{i} \leftarrow \mathbf{J}_{i}$

Fields are Integrated self consistently with QED vacuum non linear terms

NL Scheme requires field values at all grid points

Standard Yee Solver

(1) advance B field $\Delta t / 2$
(2) advance E field Δt
(3) advance B field another $\Delta t / 2$

Spatial Grid 2D visualisation

Main features of linear Solver

- Uses Faraday's and Ampère's Equation rather than wave equation to advance fields.
- Staggered grid: E \& B fields are decentered from each other allowing second order precision.
- Linear coupling between fields allows straightforward temporal evolution.

Non Linear Solver

- Ampère's law is corrected by nonlinear polarisation \& magnetisation.
- EM invariants couple all components of all fields \rightarrow necessary to calculate them at all grid points.
- Temporally the loss of linearity does not allow fields to be straightforwardly advanced.

NLYee Solver

[^0]
Strong static field changes vacuum refractive index

With Static Electric Field:*

$$
\begin{gathered}
E_{y}=\tilde{E}_{y}+E_{s} \quad E_{z}=\tilde{E}_{z} \\
n_{\|}=\left(\frac{1+6 \xi E_{s}^{2}}{1+2 \xi E_{s}^{2}}\right)^{1 / 2} \approx 1+2 \xi E_{s}^{2} \\
n_{\perp}=\left(\frac{1+2 \xi E_{s}^{2}}{1-5 \xi E_{s}^{2}}\right)^{1 / 2} \approx 1+\frac{7}{2} \xi E_{s}^{2}
\end{gathered}
$$

ξ	E	ξ	n	n
2×10	1000	0.02	1.0377	1.0749

Counter propagating plane waves give rise to HHG !it

Do the QED corrections change the dynamics?

Study the interaction between two counter propagating photons in the presence of HE non linearities!

In the absence of NL

$$
\begin{aligned}
& E_{y}=E_{0}(\cos (x-t)+\cos (x+t)) \\
& B_{z}=B_{0}(\cos (x+t)-\cos (x-t))
\end{aligned}
$$

We would simply have a standing wave

The first EM invariant couples both fields leading to NL polarisation and magnetisation \rightarrow generation of higher harmonics

$$
P_{y}^{(0)} \sim 2 \xi(\cos (3 x-t)+\cos (x-3 t)+\ldots)
$$

Vacuum fluctuations* Third harmonic
Incoming beam

Analytical solution in ID setup

Theoretical Analysis

$E=E_{0}+E_{1}+E_{2}+\ldots$
$B=B_{0}+B_{1}+B_{2}+\ldots$

With the source term given by:
$S(x, t)_{1}=16 \xi E_{0}^{3} \cos (t) \cos (x)(3 \cos (2 t)-\cos (2 x))$
Formally, the solution is given by:
$E_{1}(x, t)=\int_{0}^{L} \int_{0}^{t} d t^{\prime} d x^{\prime} G\left(x, x^{\prime}, t, t^{\prime}\right) S\left(x^{\prime}, t^{\prime}\right)$
The first order correction to the field becomes:
$E_{1}(x, t)=-2 \xi E_{0}^{3} \sin (t) \cos (x)(2 \sin (2 t)(\cos (2 x)-2)-4 t)$

Fourier Transform yields easier

comparison

$\tilde{E}^{(1)}(k=1)=4 \xi E_{0}^{3} t \sin (t)+3 \xi E_{0}^{3} \sin (t) \sin (2 t)$ $\tilde{E}^{(1)}(k=3)=-\xi E_{0}^{3} \sin (t) \sin (2 t)$

Expression for the amplitude of a given (odd) harmonic

Simulations show generation of odd harmonics in the fields, with the following relative amplitude

$$
\tilde{E}(k=2 n+1)=\left(E_{0}^{2} \xi\right)^{n} \tilde{E}(k=1)
$$

Simulation results match theoretical predictions

|FFT $\left(\mathrm{E}_{2}\right) \mid$

Fourier Transform of Electric field for two simulations, with and without QED corrected Maxwell's Equations.

To verify theory we compared the temporal evolution of subtracted $\mathrm{k}=1$ FFT mode, with theoretical result.

$$
\tilde{E}^{(1)}(k=1)=4 \xi E_{0}^{3} t \sin (t)+3 \xi E_{0}^{3} \sin (t) \sin (2 t)
$$

2D Results - Beams with different polarisations

Setup with 2 counter propagating Gaussian pulses polarised in x_{2} and x_{3} respectively.

Fourier transform of beams before nonlinear interaction.

$$
\begin{aligned}
& \mathrm{a}_{0}=50 \\
& \xi=1.0 \times 10^{-7} \\
& \lambda=1.0 \times 10^{-6}
\end{aligned}
$$

2D Results - HHG for both fields

Odd Harmonics are generated for fields in both directions! Relative amplitude of FFT seem to agree with ID prediction

2D Results - Perpendicular beam collision

Setup with 2 Gaussian pulses propagating in perpendicular directions

Fourier transform of beam before nonlinear interaction.

$$
\begin{aligned}
& \mathrm{a}_{0}=100 \\
& \xi=1.0 \times 10^{-6} \\
& \lambda=1.0 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

2D Results - HHG for perpendicular beam collision $1 \sqrt{\mathrm{I}}$

Combination of odd and even harmonics is generated; After interaction, imprint is left in both pulses as they now freely propagate.

Conclusions

New multi-dimensional Maxwell QED Solver implemented in OSIRIS

- Modified Yee scheme includes nonlinear polarisation and magnetisation terms due to $\mathrm{e}^{-} \mathrm{e}^{+}$fluctuations
- Nontrivial solver requires evaluation of EM fields at all grid points and a recursive loop to advance them in time

Simulations in excellent agreement with theoretical predictions

- Birefringence of vacuum verified and present in many setups.
- Counter propagating plane waves: results in ID in perfect agreement with theory
- 2D counter propagating pulses reveals expected qualitative behaviour.

Future work

- Broad range of experimental 2D setups may be tested
- Can these corrections alter plasma dynamics in extreme environments?
- 3D generalisation to verify predictions available in literature.

[^0]: * K. S. Yee, IEEE Trans. Antennas Propagat., vol. I4, pp. 302-307, I966.

