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Motivation

* W. Heisenberg and H. Euler, Z. Physik 98, 714 (1936).

Physics bellow Schwinger limit Heisenberg-Euler corrections to 
Maxwell’s Equations*

Electron-positron fluctuations give rise to an effective 
polarisation and magnetisation of the vacuum which 
can be treated in an effective form as corrections to 
Maxwell’s equations. 	

!
!
!
Valid for static inhomogeneous fields such that	

!
!
!
!
Effectively, we obtain a highly non linear, non 
dispersive vacuum  
 
Higher order corrections include spatial and 
temporal derivatives of these corrections. May be 
neglected for:
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first order polarization! Furthermore, we see that, aside a not so negligible
numerical constant, the relative amplitude between the k = 3 mode gener-
ated at first order, and the fundamental, unperturbed mode is
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It is valid to neglect the dispersive terms if:
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which is almost complementarily satisfied by the condition above for the
validity of the HE terms.

5

!
๏ Relevance for extreme astrophysical scenarios?  
 
๏ Effect on laser properties as we reach Schwinger 
limit? 	

๏ Extract observable consequences of fundamental 
QED predictions.	

!
๏  ELI energies will allow us to probe the dynamics of 

Quantum Vacuum. 
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Heisenberg-Euler modified equations 

QED corrections to Maxwell’s 
equations Developed Maxwell’s Equations

Key Features

๏ Non linear polarisation and magnetisation.

๏ Dependence on EM invariants.

๏ Relative ordering allow to treat these  
terms as perturbations to Linear ME.

γ

γ

γ

γ
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New Features in v2.0	

· Bessel Beams 	

· Binary Collision Module	

· Tunnel (ADK) and Impact Ionization	

· Dynamic Load Balancing	

· PML absorbing BC	

· Optimized higher order splines	

· Parallel I/O (HDF5)	

· Boosted frame in 1/2/3D	

· QED module + Merging algorithm	

· QED Maxwell Solver 

Osiris Slide

osiris framework	

!

· Massivelly Parallel, Fully Relativistic  
Particle-in-Cell (PIC) Code 	


· Visualization and Data Analysis Infrastructure	

· Developed by the osiris.consortium	


⇒  UCLA + IST

Ricardo Fonseca: ricardo.fonseca@ist.utl.pt	

Frank Tsung: tsung@physics.ucla.edu	

http://cfp.ist.utl.pt/golp/epp/  
http://exodus.physics.ucla.edu/

OSIRIS 2.0

mailto:ricardo.fonseca@ist.utl.pt
mailto:tsung@physics.ucla.edu
http://cfp.ist.utl.pt/golp/epp
http://exodus.physics.ucla.edu/


The Solver (1)OSIRIS PIC LOOP

PARTICLES

GRID

Integration of equations of motion: 
moving particles

Integration of field equations: 
updating fields

Deposition:                            
calculating current on grid

Interpolation:                            
evaluating force on particles

Fp � up � xp

(E,B)i � Ji

(E,B)i � Fp (x,u)p � ji
�t

Fields are Integrated self consistently  
with QED vacuum non linear terms
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NL Scheme requires field values at all grid points

By 
i , j i+1/2 ,  j

i ,  j+1/2 i+1/2  j+1/2

Ex 

Ey 

Ez 

Bz Bx 

x2

x1

Spatial Grid 2D visualisation

Main features of linear Solver Non Linear Solver

๏ Uses Faraday’s and Ampère’s Equation rather  
  than wave equation to advance fields.

๏ Staggered grid: E & B fields are decentered from  
 each other allowing second order precision.

๏ Linear coupling between fields allows  
  straightforward temporal evolution.

๏ Ampère’s law is corrected by nonlinear  
  polarisation & magnetisation.

๏ EM invariants couple all components of  
  all fields → necessary to calculate 
  them at all grid points.
 ๏ Temporally the loss of linearity does not allow  
  fields to be straightforwardly advanced.

Standard Yee Solver

1

2

3

advance B field Δt/2

advance E field Δt

advance B field another Δt/2
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GRIDIntegration of fields 
(E,B)i � Ji

Corrected Faraday law

Linear Yee Scheme* 	

(predicted quantities)

Interpolate fields in 
space	


E(i,j)+1/2, Bi,j

Polarisation & 
Magnetisation

Advance E field w/ 
nonlinearities 

(modified Ampere)

EM InvariantsRecursive loop for 	

Convergence	


�t

NL Yee Solver

	
 .	
 * K. S. Yee, IEEE Trans. Antennas Propagat., vol. 14, pp. 302–307, 1966. 	
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Strong static field changes vacuum refractive index

With Static Electric Field:*

z

y

x

Es

k = k ex
E𝛾

𝜉 E 𝜉 n n

2× 10 1000 0.02 1.0377 1.0749

Self consistent NL

Without NL

*Della Valle F, et.al, arXiv:1301.4918 [quant-ph] P.Carneiro| ExHILP - Heidelberg | July 2015



Counter propagating plane waves give rise to HHG

z

y

x

k = k ex k = - k ex

In the absence of NL

We would simply have a standing wave

The first EM invariant couples both fields leading to NL 
polarisation and magnetisation → generation of higher 
harmonics

Third harmonicVacuum fluctuations*

Incoming beam

Study the interaction between two counter 
propagating photons in the presence of HE non 
linearities! 

Do the QED corrections change the dynamics?
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Analytical solution in 1D setup

Theoretical Analysis

Relation which seems to be extracted from the results is:

˜E(k = 2n+ 1) = (E2
0⇠)

n
˜E(k = 1) (11)

1 Counter propagating Setup

If one is to solve Maxwell’s equations exactly, it is equivalent to solve the
following wave equation (reduced to it’s 1D form):

✓
@2

@x2
� @2

@t2

◆
Ey =

@2Py

@t2
� @

@x

@Mz

@t
(12)

✓
@2

@x2
� @2

@t2

◆
Ez =

@2Pz

@t2
+

@

@x

@My

@t
(13)

This problem is not closed as P and M are both non linear functions of
Ey,Ez, By and Bz. To obtain a solution we take advantage of the smallness of
the QED corrections compared to the actual fields to perform a perturbative
analysis of the equation. We expand the true solution in a small parame-
ter which we know should exist, but is not necessarily aparent yet what it
corresponds to:

E = E0 + E1 + E2 + ... (14)

B = B0 +B1 +B2 + ... (15)

The source term may be readily evaluated to the first oder by insert-
ing the unperturbed fields thus calculating the first order polarization and
magnetization, yielding:

S(x, t)1 = 32⇠E3
0cos(t)cos(x)(�2 + 3cos(2t) + cos(2x)) (16)

The fourier transofrm of this source term is

2

p
2⇡⇠E03�(k�3) cos(t)+4

p
2⇡⇠E03�(k�1) cos(t)+2

p
2⇡⇠E03�(k�1) cos(3t)+4

p
2⇡⇠E03�(k+1) cos(t)+2

p
2⇡⇠E03�(k+1) cos(3t)+2

p
2⇡⇠E03�(k+3) cos(t)

(17)
We see from the fourier transform, that the lowest order source term con-

tains already the seeds for the generation of higher harmonics by containing
contributions of k=1 and k = 3 modes. It must be also emphasized that these

2

terms are of the order of ⇠E3
0 which for experimental parameters is indeed

a small parameter. Finally note that amplitude of the different harmonics
differs by a factor of 3.

The inhomogeneous wave equation we want to solve to obtain the first order
correction of the fields is

✓
@2

@x2
� @2

@t2

◆
E1 = S1(x, t) (18)

The solution to this equation is formally given by the convolution between
the source term and the appropriate Green function that satisfies

✓
@2

@x2
� @2

@t2

◆
G(x, x0, t, t0) = �(x� x0

)�(t� t0) (19)

For the wave equation the Green function is given by

G(x, x0, t, t0) =
c

2

H(c(t� t0)� |x� x0|) (20)

128⇠E03 sin2
(t) cos(t) cos3(x) (21)

3

Resonant signature
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✓
@2

@x2
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@t2

◆
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)�(t� t0) (19)

For the wave equation the Green function is given by

G(x, x0, t, t0) =
c

2

H(c(t� t0)� |x� x0|) (20)

thus, formally the causal solution of the wave equation is give by

E1(x, t) =

Z L

0

Z t

0

dt0dx0G(x, x0, t, t0)S(x0, t0) (21)

128⇠E03 sin2
(t) cos(t) cos3(x) (22)

3

Relation which seems to be extracted from the results is:

Ẽ(k = 2n+ 1) = (E2
0⇠)

n
Ẽ(k = 1) (11)

2

Expression for the amplitude of a given (odd) harmonic

With the source term given by:

The first order correction to the field becomes:

Fourier Transform yields easier 
comparison

Formally, the solution is given by:

Simulations show generation of odd harmonics 	

in the fields, with the following relative amplitude
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Simulation Results

Without QED NL

Simulation results match theoretical predictions

Fourier Transform of Electric field for 
two simulations, with and without 
QED corrected Maxwell’s Equations.

To verify theory we compared the 
temporal evolution of  subtracted  	

k = 1 FFT mode, with theoretical 
result.

Simulation Results

First order theoretical points

E1 (
k=
1)

 [
m

ec
w

0e
-1
]

Time [1/w0 ]
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2D Results - Beams with different polarisations

Setup with 2 counter propagating Gaussian 
pulses polarised in x2 and x3 respectively.

Fourier transform of beams before 
nonlinear interaction.

E2 E3

a0 = 50   	

𝜉 = 1.0 x 10-7  

λ =  1.0 x 10 -6
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2D Results - HHG for both fields

Odd Harmonics are generated for fields in both directions!             
Relative amplitude of FFT seem to agree with 1D prediction
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2D Results - Perpendicular beam collision

a0 = 100   	

𝜉 = 1.0 x 10-6  

λ =  1.0 x 10 -6 m

Setup with 2 Gaussian pulses propagating in 
perpendicular directions

Fourier transform of beam before nonlinear 
interaction.
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2D Results - HHG for perpendicular beam collision

P.Carneiro| ExHILP - Heidelberg | July 2015

Combination of odd and even harmonics is 
generated; After interaction, imprint is left in both 
pulses as they now freely propagate.



Conclusions

New multi-dimensional Maxwell QED Solver implemented in OSIRIS 
๏ Modified Yee scheme includes nonlinear polarisation and magnetisation terms due 
to e-e+ fluctuations	

๏ Nontrivial solver requires evaluation of EM fields at all grid points and a recursive 
loop to advance them in time

Simulations in excellent agreement with theoretical predictions 
๏ Birefringence of  vacuum verified and present in many setups. 	

๏ Counter propagating plane waves: results in 1D in perfect agreement with theory	

๏ 2D counter propagating pulses reveals expected qualitative behaviour.

๏ Broad range of experimental 2D setups may be tested 	

๏ Can these corrections alter plasma dynamics in extreme environments?	

๏ 3D generalisation to verify predictions available in literature.	


Future work
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