Semi-classical Schwinger pair production in rotating electric fields

Université

nice
Sophia Antipolis

Abstract

We investigate Schwinger pair production for time dependent fields with more than one component using a semiclassical saddlepoint approximation. In this framework it is possible to study rotating electric fields. We find that the momentum and spin spectra of different pulses show characteristic shapes.

The idea

(1) Reformulate the equation of motion in terms of equations for the mode functions $\alpha(t), \beta(t)$.
(3) Perform a multiple integral iteration to compute $|\beta(t)|^{2}$.

- Calculate the integrals with a semiclassical saddle point approximation to derive the number of created pairs for each momentum mode \vec{k}.

(1) Equations for $\alpha(t), \beta(t)$

We start from the Dirac equation

$$
\left(\left[i \hbar \partial_{\mu}-e A_{\mu}(x)\right] \gamma^{\mu}-m c\right) \Psi(\vec{x}, t)=0 .
$$

and decompose the spinor operator as

$$
\Psi(x, t) \sim \mathrm{e}^{\frac{1}{\hbar} \vec{k} \vec{x}} \psi(t) .
$$

For two component fields solely depending on time we now make the ansatz

$$
\psi_{\uparrow}(t)=\left(\begin{array}{c}
\psi_{1}^{+}(t) \\
\psi_{2}^{+}(t) \\
-\frac{c c_{2}+\epsilon_{1}}{} \psi_{1}^{+}(t) \\
\frac{c k_{7}^{m+\epsilon_{1}}}{m c^{2}} \psi_{2}^{+}(t)
\end{array}\right), \psi_{\downarrow}(t)=\left(\begin{array}{c}
-\frac{c k_{2}+\epsilon_{1}}{k_{1}} \psi_{1}^{-}(t) \\
\frac{c c_{2} c_{1}^{2}}{m c_{1}} \psi_{2}^{-}(t) \\
\psi_{1}^{-}(t) \\
\psi_{2}^{-}(t)
\end{array}\right)
$$

$$
\text { where } \quad \epsilon_{\perp}^{2}:=c^{2} k_{z}^{2}+m^{2} c^{4}
$$

and
$\psi_{i}^{ \pm}(t)=\alpha_{ \pm}(t) F_{\alpha, i}^{ \pm}(t) \frac{\mathrm{e}^{-\frac{i}{2} K_{0}(t)}}{\sqrt{\omega_{\vec{k}}(t)}}+\beta_{ \pm}(t) F_{\beta, i}^{ \pm}(t) \frac{\mathrm{e}^{\frac{i}{2} K_{0}(t)}}{\sqrt{\omega_{\vec{k}}(t)}}$
with

$$
K_{0}(t):=\frac{2}{\hbar} \int_{0}^{t} \omega_{\vec{k}}\left(t^{\prime}\right) d t^{\prime},
$$

and

$$
\omega_{\vec{k}}(t)^{2}:=c^{2} \vec{p}(t)^{2}+m^{2} c^{4}, \quad \vec{p}(t):=\vec{k}+\mathrm{ie} A(x) .
$$

Here we want to choose $F_{\alpha /, i}^{ \pm}(t)$ such that $\dot{\alpha}_{ \pm}(t)$ is
only a function of $\beta_{ \pm}(t)$ and vice versa. One finds [1]

$$
\begin{aligned}
& \dot{\alpha}_{s}(t)=\frac{\dot{\omega}_{\vec{k}}(t)}{2 \omega_{\vec{k}}(t)} G_{+}^{s}(t) \mathrm{e}^{i K_{s}(t)} \beta_{s}(t), \\
& \dot{\beta}_{s}(t)=\frac{\dot{\omega}_{\vec{k}}(t)}{2 \omega_{\vec{k}}(t)} G_{-}^{s}(t) \mathrm{e}^{-\mathrm{i} K_{s}(t)} \alpha_{s}(t),
\end{aligned}
$$

where
$K_{s}(t):=K_{0}(t)-s \epsilon_{\perp} \int_{0}^{t} \frac{\dot{p}_{x}\left(t^{\prime}\right) p_{y}\left(t^{\prime}\right)-\dot{p}_{y}\left(t^{\prime}\right) p_{x}\left(t^{\prime}\right)}{\omega_{\vec{k}}\left(t^{\prime}\right) p_{\|}\left(t^{\prime}\right)^{2}} d t^{\prime}$,
$G_{ \pm}^{s}(t)=\mathrm{is} \frac{\epsilon_{\perp}}{c p_{\|}(t)} \pm \frac{\dot{p}_{x}(t) p_{y}(t)-\dot{p}_{y}(t) p_{x}(t)}{\dot{p}_{x}(t) p_{x}(t)+\dot{p}_{y}(t) p_{y}(t)} \frac{\omega_{\vec{k}}(t)}{c p_{\|}(t)}$.

Results

- good agreement with numerical DHW-results
- numerical method: complementary to DHW-method
- approximate method: faster than numerical ones

For two component fields:

- dependence on spin
- interference effects in total particle number

Eckhard Strobel
ICRANet Pescara - Università di Roma "La Sapienza"
Université de Nice Sophia Antipolis

$$
\begin{aligned}
& \quad 2 \text { Multiple Integral Iteration } \\
& \text { The transmission probability } \\
& \text { can be interpreted as the number of produced electron-positron pairs as a function of the momentum } \vec{k} \text {. } \\
& \text { Posing appropriate boundary conditions, i.e. } \beta_{s}(-\infty)=0 \text { and } \alpha_{s}(-\infty)=1 \text {, we find } \\
& \beta^{s}(\infty)=\sum_{m=0}^{\infty} \int_{-\infty}^{\infty} d t_{0} G_{-}\left(t_{0}\right) \frac{\dot{\omega}_{\vec{k}}\left(t_{0}\right)}{2 \omega_{\vec{k}}\left(t_{0}\right)} \mathrm{e}^{-i K_{s}\left(t_{0}\right)} \prod_{n=1}^{m} \int_{-\infty}^{t_{n-1}} d \tau_{n} G_{+}\left(\tau_{n}\right) \frac{\dot{\omega}_{\vec{k}}\left(\tau_{n}\right)}{2 \omega_{\vec{k}}\left(\tau_{n}\right)} \mathrm{e}^{i K_{s}\left(\tau_{n}\right)} \int_{-\infty}^{\tau_{n}} d t_{n} G_{-}\left(t_{n}\right) \frac{\dot{\omega}_{\vec{k}}\left(t_{n}\right)}{2 \omega_{\vec{k}}\left(t_{n}\right)} \mathrm{e}^{-\mathrm{i} K_{s}\left(t_{n}\right)}
\end{aligned}
$$

Saddlepoint approximation

Using the fact that the integrals are dominated by regions around the classical turning points

$$
\omega_{\vec{k}}\left(t_{p}^{ \pm}\right):=0
$$

and assuming that we only have simple turning points, one can use a semiclassical saddlepoint approximation to find the momentum spectrum and total pair creation rate $[1,2]$

$$
\begin{aligned}
& W_{S C}^{s}(\vec{k})=\left|\sum_{t_{p}} \mathrm{e}^{-\mathrm{i} K_{s}\left(t_{p}\right)}\right|^{2} \\
& \frac{\Gamma^{s}}{V}=\int \frac{d^{3} k}{(2 \pi \hbar)^{3}} W_{S C}^{s}(\vec{k})
\end{aligned}
$$

Approximative method

We can use the fact that there is an analytic solution for the rectangular pulse to approximate every rotating pulse like this:

Approximation for $\Delta \tau \rightarrow 0$

$$
W_{\mathrm{SC}}^{\widetilde{C}}(\vec{k})=W_{\mathrm{SC}}^{\text {const }}\left(\vec{k}, E\left(t_{p}(\vec{k})\right)\right)
$$

- $W_{\mathrm{SC}}^{\text {const }}\left(\vec{k}, E_{0}\right): W_{\mathrm{SC}}(\vec{k})$ of constant rotating field E_{0} - $E(t)=|\vec{E}(t)|:$ form of the pulse
- $t_{p}(\vec{k})$: turning points of constant rotating field

Rectangular Pulse

Since a constant electric field would create an infinite amount of pairs we look at the rectangular pulse

$$
\vec{E}=E_{0} \operatorname{Rect}(t / \tau)(\cos (\Omega t),-g \sin (\Omega t), 0), \quad \operatorname{Rect}(x)=\Theta(x)-\Theta(x-1)
$$

We can find analytical results for $K_{ \pm}\left(t_{p}\right)$ [1]:
$10^{4} W_{\text {sc }}$

Figure : Momentum spectrum of pairs produced for $E=0.1 E_{c}, \tau=4 \pi \lambda_{c} / c, \Omega \tau=4 \pi$ and $k_{z}=0$. The two different spin states are plotted as a thin red line.

Figure : Total particle number per Compton volume V_{c} for $E=0.1 E_{c}$ and $\Omega \tau=2 \pi n$. For $n=1$ we also plotted the pair creation in the respective spin states.

Comparison to DHW-results: Sauter Pulse

We can also look at the rotating Sauter Pulse.

$$
\vec{E}(t)=\frac{E_{0}}{\cosh ^{2}\left(\frac{t}{\tau}\right)}(\cos (\Omega t), \sin (\Omega t), 0)
$$

Compare to the DHW method [3, 4]:

Figure : Momentum spectrum for $E=0.1 E_{c}, \tau=4 \pi \lambda_{c} / c$, $\sigma=\Omega \tau=6$ and $k_{z}=0$.The semiclassical result (left) agrees with the one of the DHW method of [3] (right).

Figure : Total particle number for $E=0.1 E_{c}$ and different $\sigma=\Omega \tau$. We compare to the approximative (dashed) and DHW-result (dotted).

References and Acknowledgements

