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Abstract
We investigate Schwinger pair production for time
dependent fields with more than one component using
a semiclassical saddlepoint approximation. In this
framework it is possible to study rotating electric fields.
We find that the momentum and spin spectra of
different pulses show characteristic shapes.

The idea
1 Reformulate the equation of motion in terms of

equations for the mode functions α(t), β(t).
2 Perform a multiple integral iteration to compute
|β(t)|2.

3 Calculate the integrals with a semiclassical saddle
point approximation to derive the number of created
pairs for each momentum mode ~k .

1 Equations for α(t), β(t)
We start from the Dirac equation

([i~∂µ − eAµ(x)] γµ −mc) Ψ(~x , t) = 0.

and decompose the spinor operator as

Ψ(x , t) ∼ e
i
~
~k~xψ(t).

For two component fields solely depending on time we
now make the ansatz
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where ε2

⊥ := c2k2
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and
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with

K0(t) :=
2

~

∫ t

0

ω~k(t ′)dt ′,

and

ω~k(t)2 := c2~p(t)2 + m2c4, ~p(t) := ~k + ieA(x).

Here we want to choose F±α/β,i(t) such that α̇±(t) is

only a function of β±(t) and vice versa. One finds [1]
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Results
good agreement with numerical DHW-results

numerical method: complementary to DHW-method

approximate method: faster than numerical ones

For two component fields:

dependence on spin

interference effects in total particle number

2 Multiple Integral Iteration

The transmission probability W s(~k) := lim
t→∞
|βs(t)|2 ,

can be interpreted as the number of produced electron-positron pairs as a function of the momentum ~k .
Posing appropriate boundary conditions, i.e. βs(−∞) = 0 and αs(−∞) = 1, we find
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3 Saddlepoint approximation
Using the fact that the integrals are dominated
by regions around the classical turning points

ω~k(t±p ) := 0

and assuming that we only have simple turning
points, one can use a semiclassical saddlepoint
approximation to find the momentum spectrum
and total pair creation rate [1, 2]
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Approximative method

We can use the fact that
there is an analytic so-
lution for the rectangu-
lar pulse to approximate
every rotating pulse like
this: t

∣∣∣~E (t)
∣∣∣

∆τ

Approximation for ∆τ → 0

W≈
SC(~k) = W const

SC (~k,E (tp(~k)))

W const
SC (~k,E0): WSC(~k) of constant rotating field E0

E (t) =
∣∣∣~E (t)

∣∣∣: form of the pulse

tp(~k): turning points of constant rotating field

Rectangular Pulse
Since a constant electric field would create an infinite amount of pairs we look at the rectangular pulse

~E = E0 Rect (t/τ ) (cos(Ωt),−g sin(Ωt), 0), Rect(x) = Θ(x)− Θ(x − 1).

We can find analytical results for K±(tp) [1]:
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Figure : Momentum spectrum of pairs produced for
E = 0.1Ec, τ = 4πλc/c , Ωτ = 4π and kz = 0. The two
different spin states are plotted as a thin red line.
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Figure : Total particle number per Compton volume Vc for
E = 0.1Ec and Ωτ = 2π n. For n = 1 we also plotted the pair
creation in the respective spin states.

Comparison to DHW-results: Sauter Pulse
We can also look at the rotating Sauter Pulse.

~E (t) =
E0

cosh2
(
t
τ

)(cos(Ωt), sin(Ωt), 0)

Compare to the DHW method [3, 4]:
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Figure : Momentum spectrum for E = 0.1Ec, τ = 4πλc/c ,
σ = Ωτ = 6 and kz = 0.The semiclassical result (left) agrees
with the one of the DHW method of [3] (right).
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Figure : Total particle number for E = 0.1Ec and different
σ = Ωτ . We compare to the approximative (dashed) and
DHW-result (dotted).
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