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Justification of the single-mode approximation for a finite-duration laser pulse interacting with an electron

Fig. 1: Collision of an electron with a plane-wave laser pulse

The equation for the state vector of a relativistic electron in-
teracting with a multi-mode transversal quantized laser pulse
reads (ħ= c = 1):
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lead to the representation of the Hamiltonian as the sum

H ≡ HA +H1+H2,

where HA and H1,2 describe the single-collective mode and fluc-
tuations relative to the collective mode, respectively. We build a
perturbation theory over H1,2 and find the equation for the en-
ergy of the system

(q̂ (0)−m −HA)|Ψ(0)〉 = 0,

q̂ (1)|Ψ(0)〉+ (q̂ (0)−m −HA)|Ψ(1)〉 = (H1+H2)|Ψ(0)〉.
This allows us to find dimensionless parameters which deter-
mine the applicability of the single-mode approximation (λ ∼
σ2/σ2
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Collapse-revival dynamics of strongly laser-driven electrons

Fig. 2: Interaction of electrons with a single-mode quantized field

We analyze the influence of quantum effects coming from a
laser field on an electron spin four-vector:

sµ(x , t ) = 〈ψ|γ0γ5γµδ(x − r ′)|ψ〉
〈ψ|ψ〉 , (7)

where |ψ〉 is the solution of the Dirac equation in a single-mode
quantized field. We consider that at the initial time the electron
is free and the field is in a coherent state.
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where ε0 =
√

p2
0+m2, a0 is the initial four-vector of the electron

spin, p0 = (ε0, p0), and Jl the Bessel function of order l .
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Fig. 3: Probability to find an electron with an oppositely directed spin
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Spin-dependent Compton scattering in a strong and short laser pulse

The field strength is characterized through the invariant pa-
rameter

ξ= |e|A
m

. (9)

When ξÀ 1 all processes include many photons. The sec-
ond parameter

χ=
|e|

√
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, (10)

contains the Planck’s constant ħ and consequently deter-
mines the importance of quantum effects.64 Spin-dependent Compton scattering in an intense classical electromagnetic field § 19
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Figure 19.1 – Feynman diagram of the first-order scattering process in the field of a plane elec-
tromagnetic wave.

From equation (19.1) we conclude, that there are few possible decay processes of the first
order, for example:

• An electron-positron pair creation by a photon.

• An electron-positron pair annihilation into a photon.

• An electron decay into photon and electron.

• A positron decay into photon and positron.

All these processes are described by a single diagram, which is depicted on Fig. 19.1. We pay
attention, that contrary to the free case, a photon emission is possible due to the presence of the
plane wave.

We are interested in the case of Compton scattering, i.e., when in the initial state was a
single electron |pµi with the momentum p and helicity µ, which decayed into the final state of
an electron |p1µ1i and a photon |k1�1i, with the four vector k1 and polarization �1. By using
formulas (16.16) for the matrix elements, we find the expression for the S-matrix
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where  µp(x) are the Volkov wave functions, which were defined in § 1 and ê⇤ is the polarization
vector of the emitted photon.

For the evaluation of (19.2) the model for the vector potential of the external field need to
be specified. We choose the circular polarization with an envelop function:

Aµ(x) = �m⇠
e

f (�)(Aµ1 cos � + Aµ2 sin �), (19.3)

where � is the phase of the wave � = (k · x), k is the four wave vector k = (!,k), f (�) is the
envelope function, A1 and A2 are the constant four vectors, which satisfy the conditions

(A1 · A2) = 0, (A1 · A1) = (A2 · A2) = �1, (k · A1) = (k · A2) = 0. (19.4)

We will normalize the Volkov wave functions not on the momentum, but rather on the
di↵erences p� ⌘ p0 � p3 , see § 17:
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Fig. 4: Feynman diagram of the Compton effect in a strong laser field

The scattering amplitude in the Furry picture reads:
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where ψµp are Volkov solutions of the Dirac equation.
In our study we consider circularly polarized strong and
short laser pulses, such that an electric field is equal to

E (x) = mξω

e
f (φ)(ex cosφ+e y sinφ),

where φ = (k · x) is the field phase and f (φ) is the envelope
function.
Since there is a preferable direction in this problem, namely
the wave vector k of the external field, the conservation of
momentum is different from the free case
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Fig. 5: Photon emission spectrum and asymmetry of scattering in a fully quantum

regime as a function of emitted photon frequency and pulse length
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