SPIN EVOLUTION IN CLASSICAL VERSUS QUANTUM LASER PULSES
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Justification of the single-mode approximation for a finite-duration laser pulse interacting with an electron

The equation for the state vector of a relativistic electron in-

teracting with a multi-mode transversal quantized laser pulse

reads (n=c=1):
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lead to the representation of the Hamiltonian as the sum
H= HA + Hl + Hz,

where H, and H, , describe the single-collective mode and fluc-
tuations relative to the collective mode, respectively. We build a
perturbation theory over H; » and find the equation for the en-

. . ergy of the system
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This allows us to find dimensionless parameters which deter-
mine the applicability of the single-mode approximation (A ~
g2/07)
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Fig. 1: Collision of an electron with a plane-wave laser pulse ] Wo 4
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Collapse-revival dynamics of strongly laser-driven electrons

We analyze the influence of quantum effects coming from a
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laser field on an electron spin four-vector:
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where |y) is the solution of the Dirac equation in a single-mode
quantized field. We consider that at the initial time the electron
is free and the field is in a coherent state.
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Fig. 2: Interaction of electrons with a single-mode quantized field 2€0
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where g = \/ p% + m?, ay is the initial four-vector of the electron
spin, po = (€¢, py), and J; the Bessel function of order /.

Fig. 3: Probability to find an electron with an oppositely directed spin

Spin-dependent Compton scattering in a strong and short laser pulse

The field strength is characterized through the invariant pa-

rameter
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When ¢ > 1 all processes include many photons. The sec-

ond parameter
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contains the Planck’s constant 77 and consequently deter-
mines the importance of quantum effects.
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Fig. 4: Feynman diagram of the Compton effect in a strong laser field

The scattering amplitude in the Furry picture reads:
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where v, are Volkov solutions of the Dirac equation.
In our study we consider circularly polarized strong and
short laser pulses, such that an electric field is equal to

méw .
E(x) = Tf(cp)(excoscp +e,sin¢),

where ¢ = (k- x) is the field phase and f(¢) is the envelope
function.

Since there is a preferable direction in this problem, namely
the wave vector k of the external field, the conservation of
momentum is different from the free case

Spil* ~ 8P (p —ky —pS(p~— ki —p1) (A1)
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Fig. 5: Photon emission spectrum and asymmetry of scattering in a fully quantum

regime as a function of emitted photon frequency and pulse length




