Generation of Ultrashort X-Ray Pulses Using 20 TW Laser System at PALS Facility

V Horný ${ }^{1,2,3} \quad \mathrm{~J}^{2}$ Nejdl ${ }^{2,3} \mathrm{M}$ Kozlová ${ }^{2} \quad \mathrm{M}$ Krůs ${ }^{1,2}$ O Klimo ${ }^{1,2}$
${ }^{1}$ CTU Prague - FNSPE, V Holešovičkách 2, 18000 Praha 8, Czech Republic ${ }^{2}$ Institute of Physics AS CR, Na Slovance 1999/2, 18221 Praha 8, Czech Republic

${ }^{3}$ Institute of Plasma Physics AS CR, Za Slovankou 3, 18200 Praha 8, Czech Republic

- Relativistic electron beams can be generated after interaction of ultrashort (tens of f_{s}) intense ($\mathbf{a}_{\mathbf{0}} \gtrsim 2$) laser pulse with underdense plasma ($\mathrm{n}_{\mathrm{e}}=\mathbf{1 0}^{18}-\mathbf{1 0}^{19} \mathrm{~cm}^{-3}$ for $\lambda=\mathbf{8 1 0} \mathrm{nm}$).
- Ion cavity appears when bubble regime of laser wakefield acceleration occurs.
- Strong electric field accelerates electrons injected to the rear part of the ion cavity.
- Injected electrons oscillate in transverse direction and emit X-ray radiation.
- Simulations: Trajectories of oscillating electrons were tracked during 2D PIC simulations. It enabled to calculate electric field in the far distance using theory based on Lineard -Wiechert potentials. Radiation spectra were obtained by Fourier transform.
- Experiment: Initial experimental campaign will be performed at PALS facility in November 2015 with the intention to handle diagnostics of electron beams and x-ray properties.

Located in PALS Research Centre in Prague.

- $\mathrm{E}_{\text {main }} \approx 1 \mathrm{~J}$
$-\mathrm{E}_{\mathrm{aux}} \approx 0.1 \mathrm{~J}$
- $\boldsymbol{\lambda} \approx 0.810 \mu \mathrm{~m}$
$-\tau \approx 40 \mathrm{fs}$
- $\mathbf{P} \approx 20 \mathrm{TW}$
- $\mathbf{f}_{1} \approx \approx 10 \mathrm{~Hz}$
- $\mathbf{f}_{1 \mathrm{~mJ}} \approx 1 \mathrm{kHz}$
 PlC simulations of electron acceleration in laser plasma

 Parameters of laser pulse: $\mathrm{E}=\mathbf{0 . 5 \mathrm { J } , \boldsymbol { \lambda } = \mathbf { 0 . 8 } \boldsymbol { \mu \mathrm { m } } , \boldsymbol { \tau } = 4 0 \mathrm { fs } , \mathbf { w } _ { 0 } = \mathbf { 7 } \boldsymbol { \mu } \mathrm { m } \text { . Simulated using 2D code EPOCH. }}$

PIC simulations were carried out with the various initial parameters $\left(\mathbf{w}_{\mathbf{0}}, \mathbf{n}_{\mathbf{0}}\right)$. The typical result is presented. Generation of ion cavity, development of its properties, continuous self injection of the electrons in the rear side of the target and the acceleration and oscillation of injected electron beam is observable. Energy spectrum of trapped electrons reaches hundreds of MeV .
The trajectories of several injected electrons were tracked and investigated. Electrons perform around 3-10 oscillations on 1 mm distance with the amplitude around $1.5 \mu \mathrm{~m}$.

Betatron emission from laser plasma

Electric field in the far distance and intensity of radiation gererated by one moving electron was calculated according to theory based on Lineard-Wiechert potentials

$$
E_{r a d, i}(x, t)=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{n_{i} \times\left[\left(n_{i}-\beta_{i}\right) \times \dot{\beta}_{i}\right]}{c\left(1-n_{i} \cdot \beta_{i}\right)^{3} R_{i}}\right]_{\mathrm{ret}}
$$

Radiated X-Ray spectrum was obtained via Fourier transform

$$
\frac{\mathrm{d}^{2} \mathbf{I}_{\mathrm{i}}}{\mathrm{~d} \Omega \mathrm{~d} \omega}=\frac{\mathbf{c} \varepsilon_{0}}{\pi}\left|\mathcal{F}\left[\mathrm{E}_{\mathrm{rad}, \mathrm{i}} \mathrm{R}_{\mathrm{i}}\right]\right|^{2}
$$

Spectra calculated on the axis of incoming laser beam. Single spectra of 1500 trapped electrons summed up. Number of electrons trapped into Spectra calculated on the axis of incoming laser beam. Single spectra of 1500 trapped electrons summed
ion cavity is usually of the order of $1 \mathbf{1 0}^{8-9}$ [Corde]. 2D simulation does not provide quantitative prediction. ion cavity is usually of the order of 10^{8-9} [Corde]. 2D
Time values are not the same as those by PIC results.

- Angular distribution of radiated energy by one electron moving in 2D space.
- Electron energy up to 300 MeV , accelerated within 4 mm distance.
$\checkmark 800 \mathrm{keV}$ radiated, i.e. several x-ray photons.

Acknowledgemen
Access to computing and storage facilities owned by parties and project contributing to the National Grid Infrastructure MetaCentrum, provided under the programme "Projects of Large Infrastructure for Research, Development, and Innovations" (LM2010005), is greatly appreciated. The partial financial support from CTU in Prague project No.
SGS13/221/OHK4/3T/14 is also acknowledged.

Bibliography

© Esarey, E. et at., RMP, 2009. - Corde, S. et al., RMP, 2013. Lu, W. et al., PRST - AB, 2007. - Jackson, J. D., John Wiley, 1999. - Schnell, M., Jena Univ., 2014.

