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Abstract

We explore Schwinger pair production in time-dependent elec-
tric fields of arbitrary polarization using the real-time DHW
formalism. We determine the time evolution of the Wigner
function as well as asymptotic particle distributions neglecting
back-reactions on the electric field. The field rotation leaves
characteristic imprints in the momentum distribution that can
be interpreted in terms of interference and multiphoton effects.

The Wigner function

The equal-time Wigner function is defined as the vev of a
Wigner operator, which is in turn a Fourier transformed two-
point commutator [1],

Wab = −1
2

∫
ds⃗ e− i~p⃗⋅s⃗ ⟨0∣ Φ̂ [Ψ̂a(t, x⃗ + s⃗/2), Ψ̂b(t, x⃗ − s⃗/2)] ∣0⟩ .

A Wilson line is introduced to achieve gauge invariance

Φ̂ = exp
⎛⎝−ie

∫ x⃗−s⃗/2
x⃗+s⃗/2

⃗̂
A(t, x⃗′) ⋅ dx⃗′⎞⎠ ,

and the function is decomposed into its Fierz components ac-
cording to

W = 1
4(1s + iγ5p + γµvµ + γµγ5 aµ + σµν tµν) .

Those components can in turn be used to find the phase space
energy density in the Dirac field, which also gives the 1-particle
distribution function

ε = p⃗ ⋅ v⃗(t, x⃗, p⃗) +m s(t, x⃗, p⃗) ,
f[W] = 1

2
√
m2 + p⃗ 2

(ε(t, x⃗, p⃗) − εvac.(t, x⃗, p⃗)) .

Calculating the Wigner function

In the special case of a spatially homogeneous, purely electric
field that is treated classically, inserting the Dirac Equation
into the definition leads to a partial differential equation as
an equation of motion for the Wigner function. This can be
transformed into an ordinary initial value problem by inserting

p⃗→ π⃗ = p⃗q⃗(t) = −eA⃗(t) + q⃗ .
Afterwards the following substitution is applied in order to di-
rectly calculate the 1-particle distribution function

s(π⃗, t) = (1 − f(q⃗, t)) svac.(π⃗, t) − π⃗ ⋅ v⃗(q⃗, t)
v⃗(π⃗, t) = (1 − f(q⃗, t)) v⃗vac.(π⃗, t) + v⃗(q⃗, t)
a⃗(π⃗, t) = a⃗(q⃗, t)
t⃗(π⃗, t) = t⃗(q⃗, t) .

In this context the electric Field E⃗ is given by E⃗(t) = − ˙⃗A(t)
and the modified Quantum Kinetic equations [2, 3] read

ḟ = e
2ωE⃗ ⋅ v⃗

˙⃗v= e
2ω3 (p⃗(E⃗ ⋅ p⃗) − ω2E⃗) (f − 1)− e

ω2p⃗(E⃗ ⋅ v⃗) −p⃗ × a⃗ − 2t⃗
˙⃗a= −p⃗ × v⃗
˙⃗t= 2 (v⃗ + p⃗(p⃗ ⋅ v⃗)) .

This system can be solved numerically with Runge-Kutta type
solvers using double precision arithmetic for pulse durations of
up to 1000 Compton times. For long pulses some noise sup-
pression techniques are used when integrating over the spectra
to obtain the total particle yield.

Spin, charge and chirality

Spin, charge and chirality projections are given by

P(a,b,c) = 1/2 (1 + σ(a,b,c)) σ(a,b,c) = iaγ2γ3 + ibγ3γ1 + icγ1γ2

P∓Q = 1/2 (1 ± γ0) Pl/r = 1/2 (1 ± γ5) .
The projectors can then be used to distiguish created particles
according to their chirality or direction of the magnetic moment

fl/r ∶= f[Pl/rW] = 1/2(f ± a⃗ ⋅ p⃗
2ω(p⃗))

fµ±z ∶= f [(P(0,0,±1)P−Q + P(0,0,∓1)PQ)W]
= 1/2⎛⎝f ±

maz + (p⃗ × t⃗ )
z

2ω(p⃗) ⎞⎠ .

Total particle yield in Rotating Fields

We consider a rotating pulse of the form

E⃗(t) = εEcr.
cosh2 (t/τ)

⎛⎜⎝
cos(στ t)
sin(στ t)

0

⎞⎟⎠ .
In order to calculate the total particle yield, a complete spectrum has to
be calculated, point by point. If the number of rotations is large enough
(σ ≥ 20), the spectra show a cylindrical symmetry around the z axis and
thus only a 2D spectrum in the x − z plane has to be calculated in order to

obtain the full picture. However, in the case of a low number of oscillations,
the spectrum does not yet have a cylindrical symmetry, so a 3D spectrum
has to be calculated, which needs much more time.
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These plots show the resulting total particle yield for Rotating Fields. The
dashed lines in the left plot show results obtained by a semiclassical method
as derived in [4], for comparison [5].
The Keldysh adiabacity parameter is used to discriminate multiphoton or
Schwinger-like pair production. This field configuration has two distinct time

scales, one from the oscillation of the field and one from the envelope. Using
a combined Keldysh parameter as shown in the right hand plot shows that
the results from different σ are not that different. We interpret this by saying
that the presence of the rotation time scale shifts the pair production towards
the multiphoton regime.

Magnetic moment

The spectra of created particles can differ quite a lot w. r. t. the alignment of
the magnetic moment. Different peaks can be more or less pronounced. In

general, spectra show more complex interference patterns for longer pulses,
the onset of which can be seen in the leftmost peak in the left figure.
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The semiclassical method [4] as presented by Eckhard Strobel also gives access
to similar degrees of freedom, which can be related to a linear combination

of the above and the chiral projections [5].

Particle yield in Bifrequent Fields

Particle pair production can be greatly enhanced by mixing different frequencies. Consider

E⃗(t) = Ecr.
cosh2 (t/τ)

⎛⎜⎝ε1
⎛⎜⎝

cos(στ t)
sin(στ t)

0

⎞⎟⎠ + ε2
⎛⎜⎝

cos(nστ t)
sin(nστ t)

0

⎞⎟⎠
⎞⎟⎠ .
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The higher frequencies introduce photons of higher energy into the game. As
can be seen in these spectra, not only the particle yield is greatly increased,
but the spectrum has a totally different shape. The produced pairs in this

case are much more collimated when a harmonic field is added. This is only
one example for a number of effects that can be observed in pair production
spectra in these kinds of fields [6].
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