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The QED effective Lagrangian

1936 W. Heisenberg and H. Euler: One-loop QED effective Lagrangian in a constant field (“Euler-Heisenberg

Lagrangian”)

L(1)(a, b) = −
1

8π2

∫ ∞
0

dT

T 3
e
−m2T

[
(eaT )(ebT )

tanh(eaT ) tan(ebT )
−

e2

3
(a2 − b2)T 2 − 1

]

Here a, b are the two invariants of the Maxwell field, related to E, B by a2 − b2 = B2 − E2, ab = E · B.

1936 V. Weisskopf: Analogously for Scalar QED.

L(1)
scal

(a, b) =
1

16π2

∫ ∞
0

dT

T 3
e
−m2T

[
(eaT )(ebT )

sinh(eaT ) sin(ebT )
+

e2

6
(a2 − b2)T 2 − 1

]
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N-photon amplitudes

The Euler-Heisenberg Lagrangian has the information on the N photon
amplitudes in the low energy limit (where all photon energies are small
compared to the electron mass, ωi � m ). The amplitudes can be
constructed explicitly from the weak field expansion coefficients ckl ,
defined by

L(a, b) =
∑
k,l

ckl a2kb2l

Diagrammatically, this corresponds to

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.
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Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.
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Imaginary part of the effective action

If the field has an electric component (b 6= 0) there are poles on the integration contour at ebT = kπ which
create an imaginary part. For the purely electric case one gets (J. Schwinger 1951)

ImL(1)(E) =
m4

8π3
β

2
∞∑
k=1

1

k2
exp

[
−
πk

β

]

ImL(1)
scal

(E) = −
m4

16π3
β

2
∞∑
k=1

(−1)k

k2
exp

[
−
πk

β

]

(β = eE/m2).

The kth term relates to coherent creation of k pairs in one Compton volume.

Weak field limit β � 1⇒ only k = 1 relevant.

ImL(E) depends on E nonperturbatively, which is a confirmation of the tunneling picture.
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Relation to pair creation

For not too strong fields, the imaginary part of the effective action relates to the total pair production probability P
as

P ≈ 2ImΓ(E)

This is based on the Optical Theorem, which relates

Figure 7: Higher order terms in the Euler-Heisenberg lagrangian.
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with the arguments 4, 6, 8, and 10, respectively.
Similarly, we can draw the diagrams from many particle physics in figures 8
and 9:

\def\PPRing#1{%

\begin{fmfgraph}(20,20)

\fmfsurroundn{v}{#1}

\fmfdotn{v}{#1}

\fmfcyclen{fermion,right=0.25}{v}{#1}

\fmfcyclen{fermion,left=0.25}{v}{#1}

\end{fmfgraph}}

\def\PHRing#1{%

\begin{fmfgraph}(20,20)

\fmfsurroundn{v}{#1}

\fmfdotn{v}{#1}

\fmfcyclen{fermion,right=0.25}{v}{#1}

\fmfrcyclen{fermion,right=0.25}{v}{#1}

\end{fmfgraph}}

2.7 Immediate mode

In addition to the automatic layout of vertices, feynMF features an immediate
mode, in which feynMF’s drawing commands operate directly on METAFONT’s
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Figure 1: Photon-photon scattering in QED (left) and BI theory (right).
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to the “cut diagrams”

+ + · · ·

1

However, the latter individually all vanish for a constant field, which can emit only zero-energy photons.
Thus what counts is the asymptotic behaviour for a large number of photons.
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Borel dispersion relation

Thus for a constant field we cannot use dispersion relations for
individual diagrams; the appropriate generalization is a
Borel dispersion relation: define the weak field expansion by

L(E ) =
∞∑
n=2

c(n)
( eE

m2

)2n

c(n)
n→∞∼ c∞Γ[2n − 2]

(G.V. Dunne & C.S. 1999):

ImL(E ) ∼ c∞ e−
πm2

eE

for β → 0.
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Laser field configurations

For a constant field the pair creation probability is exponentially
small for

E � Ecrit =
m2

eE
≈ 1018V/m

Thus to have any chance at seeing pair creation soon, complicated
laser configurations must be used to lower the pair creation
threshold. For example,

Counterpropagating lasers beams with linear polarization (M.
Ruf, G. R. Mocken, C. Müller, K. Z. Hatsagortsyan & C. H.
Keitel 2009).

Superimposing a plane-wave X-ray beam with a strongly
focused optical laser pulse (G.V. Dunne, H. Gies & R.
Schützhold 2009).

. . . (many more).
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Approximation methods for Schwinger pair creation

The calculation of pair creation rates for generic electric fields
requires approximative methods:

Until recent years, practically all such results were obtained
using WKB (L. Keldysh 1965, E. Brézin and C. Itzykson 1970,
N.B. Narozhnyi and A. I. Nikishov 1970, V.S. Popov 1972,
. . . ). A more sophisticated version of WKB is the worldline
instanton formalism (I.K. Affleck, O. Alvarez and N.S.
Manton 1982, G. V. Dunne and C. S. 2005, . . . ).

The quantum kinetic approach, based on some Vlasov-type
equation (Y. Kluger et al. 1991, 1992, S.M. Schmidt et al.
1998, R. Alkofer, F. Hebenstreit and H. Gies 2008 . . . ).

The Dirac-Heisenberg-Wigner formalism (F. Hebenstreit,
A.Ilderton, M. Marklund and J. Zamanian 2011, . . . ).
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Purely time-dependent fields

For a purely time-dependent electric field, the spatial momentum k
is a good quantum number, so that one has a mode decomposition
(for a scalar particle at one loop)

2ImL(t) =
∑
k

ln
(
1 +Nk(t)

)
The Nk(t) are densities of created pairs of momentum k.
Using the in-out formalism and a Bogoliubov transformation, one
can derive the Quantum Vlasov Equation (Y. Kluger et al. 1991,
1992, S.M. Schmidt et al. 1998, R. Alkofer, F. Hebenstreit and H.
Gies 2008 . . . ).
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The Quantum Vlasov equation is an evolution equation at fixed k
for the density of pairs Nk(t) (scalar case):

Ṅk(t) =
ω̇k(t)

2ωk(t)

∫ t

t0

dt ′
ω̇k(t ′)
ωk(t ′)

(1 + 2Nk(t ′)) cos
[
2

∫ t

t′
dt ′′ωk(t ′′)

]
where t0 is the initital time, usually −∞, and

ω2
k(t) = (k‖ − qA‖(t))2 + k2

⊥ + m2

Nk(t) is zero at t = −∞, and for t →∞ turns into the density of
created pairs with fixed momentum k .
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Alternative Quantum Vlasov Equation

Since (presumably) only the limit of Nk(t) for t →∞ has a
physical meaning, the evolution equation is not completely fixed.
In S.P. Kim and C.S., PRD 84, 125028 (2011) we found (using
Lewis-Riesenfeld theory) the alternative evolution equation

d

dt
(1 + 2Ñk(t)) = Ω(−)(t)

∫ t

t0

dt ′
[
Ω(−)(t ′)(1 + 2Ñk(t ′))

× cos(

∫ t

t′
dt ′′Ω(+)(t ′′))

]

Ω
(±)
k (t) =

ω2
k(t)± ω2

k(t0)

ωk(t0)
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This alternative Vlasov equation

shows a surprising relation to the Korteweg-de-Vries equation

can be solved explicitly for a family of “solitonic”
time-dependent fields

but seemed to be inequivalent: Nk(t) and Ñk(t) do not
always have the same limit for t →∞!
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Relating both Vlasov equations

A. Huet, S.P. Kim and C.S., PRD 90, 125033 (2014):

The difference between both Vlasov equations is just between
the in-out (Nk(t)) and in-in (Ñk(t)) formalisms.

Asymptotically, solutions of the two equations are related by

2Nk + 1 = 2
ωk(t0)ωk(t∞)

ω2
k(t0) + ω2

k(t∞)
〈2Ñk + 1〉

where 〈〉 means taking the asymptotic time average.
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TIme-like Sauter field

Example: the time-like Sauter field E (t) = E0 sech
2(t/τ)

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

Figure: A comparison of N (t) (blue curve) against Ñ (t) (red curve) for
the timelike Sauter field.
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Alternative Vlasov equation and KdV

Inspection shows, that the general solution of the alternative Vlasov equation can be parameterized by a function
f (t) fulfilling the integral equation.

ḟ (t) =
Ω(−)(t)

ω0

− 2

∫ t

t0

dt′f (t′)
(
ω

2(t) + ω
2(t′)

)
(1)

with the initial condition f (t0) = ḟ (t0) = 0. Knowing f (t), Ñk(t) can be recovered as

1 + 2Ñk = 1 + ω0

∫ t

t0

dt′f (t′)Ω(−)(t′)

Ansatz: f (t) =
(ω2)˙(t)

8ω4
0

, F (t) =
ω2(t)−ω2

0
8ω4

0

Defining r(t) := ω2(t)/ω2
0 and then u(x, t) := −r(x − 10t), one can show that for (1) to be fulfilled u must

solve the Korteweg-de Vries equation,

uxxx − 6uux + ut = 0

Thus we can use solutions of the KdV equation to define gauge fields which lead to a solvable Vlasov equation.
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Solitonic example

Example: choose the following soliton-type solution of the KdV equation

u(x , t) = −1− 2

cosh2(x − 10t)

which corresponds to

r(t) =
ω2(t)

ω2
0

= 1 +
2

cosh2(ω0t)
, F (t) =

1

4ω2
0 cosh2(ω0t)

The gauge potential is

qA(t) = k‖ −
√

k2
‖ +

2ω2
0

cosh2(ω0t)
.
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Non pair-creation

The exact solutions of the Vlasov equation and the alternative Vlasov
equation are

Nk(t) =
4 + sech4(ω0t)(1 + 2 cosh(2ω0t))

8
√

1 + 2sech2(ω0t)
− 1

2

Ñk(t) =
1

8 cosh4(ω0t)

Both Ñk(t) and Nk(t) vanish for t →∞, thus there is no pair creation
at that particular momentum k.

-2 -1 1 2

0.02

0.04

0.06

0.08

0.10

0.12

Nk(t) vanishes for t →∞, thus there is no pair creation (at that
particular momentum k).
The external field excites the vacuum, but no particles materialize.
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Higher-loop corrections to Schwinger’s formula

So far all our discussion was at the one-loop level. Higher-loop
corrections are not likely to be measured any time soon, but of great
theoretical interest.

Two loop (one-photon exchange) corrections:

Euler-Heisenberg Lagrangian:

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.

Number of external legs

Number of loops 4 6 8 · · ·

1

+ + + · · ·

2

+ + · · ·

· · · · · ·

3 · · · . . .
...

...
...

. . .
. . .

...

Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.
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2-Loop Euler-Heisenberg Lagrangian

V. I. Ritus 1975, S.L. Lebedev & V.I. Ritus 1984, W. Dittrich &
M. Reuter 1985, M. Reuter, M.G. Schmidt & C.S. 1997: The
two-loop correction L(2)(E ) to the Euler-Heisenberg Lagrangian
leads to rather intractable integrals. However, the imaginary part
ImL(2)(E ) becomes extremely simple in the weak-field limit:

Weak field limit:

ImL(1)(E ) + ImL(2)(E )
β→0∼ m4β2

8π3

(
1 + απ

)
e
−π
β
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The exponentiation conjecture

S.L. Lebedev & V.I. Ritus 1984: Assuming that higher orders will
lead to exponentiation

ImL(1)(E ) + ImL(2)(E ) + ImL(3)(E ) + . . .
β→0∼ m4β2

8π3
eαπ e

−π
β

For Scalar QED the corresponding conjecture was established
already two years earlier by I.K. Affleck, O. Alvarez, N.S. Manton
(1982) using worldline instantons.
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Remarkable:

True all-loop result, receives contributions from an infinite set
of graphs of arbitrary loop order

Includes mass renormalization

Implausible: an all-order loop summation has produced the
factor eαπ which is analytic in α!
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Field dependence of the electron mass

In QED at tree-level, many arguments have been given for a
field-dependence of the electron mass (N.D. Sengupta 1952,
D.Volkov 1953, H. Reiss 1962, A.I. Nikishov & V.I. Ritus
1964, T.W.B. Kibble 1965 . . . ).

This mass-shift has been confirmed so far only indirectly
(through the change in frequency of the radiation emitted by
the electron).

It is always positive but otherwise far from universal,
depending on both intensity and pulse-shape (C. Harvey, T.
Heinzl, A. Ilderton & M. Marklund 2012).
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Ritus’ “classical” one-loop mass shift

V.I. Ritus 1978: electron mass shift from the one-loop propagator
in a constant electric field.

+
+

··
·

1

In the weak-field limit,

m(E ) ≈ m − α

2

eE

m
+ O(~)

This mass shift is negative, and has a “classical” part that does
not vanish for ~→ 0.
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Lebedev-Ritus mass shift

S.L. Lebedev & V.I. Ritus 1984: assuming the exponentiation

∞∑
l=1

ImL(l) β→0∼ −m4β2

16π3
exp
[
−π
β

+ απ
]

then the result can be interpreted in the tunneling picture as the
corrections to the Schwinger pair creation rate due to the pair
being created with a negative Coulomb interaction energy

m(E ) ≈ m − α

2

eE

m
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Ritus vs. Lebedev-Ritus

This mass shift is identical with the Ritus mass shift, as it should,
since the processes are related by crossing:

+ + · · ·

1

⇐⇒

+
+

··
·

1

This lends further support to the exponentiation conjecture.
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QED in 1+1 dimensions

The exponentiation conjecture has been verified at two loops in
Scalar and Spinor QED. A three-loop check is in order, but
calculating the three-loop Euler-Heisenberg Lagrangian in D = 4 is
too difficult.

M. Krasnansky 2005: Studied the EHL in D = 2, 4, 6.

L(2)(2D)
scal (κ) = − e2

32π2

(
ξ2

2D − 4κξ′2D
)
,

ξ2D = −
(
ψ(κ+

1

2
)− ln(κ)

)
(ψ(x) = Γ′(x)/Γ(x), κ = m2/(2ef ), f 2 = 1

4 FµνFµν).

→ Suggests to establish and verify the above predictions for 2D
QED.
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Correspondences 4D - 2D

4D QED ↔ 2D QED

α =
e2

4π
↔ α̃ =

2e2

πm2

ImΓD=4 ∼ e
−m2π

eE
+απ ↔ ImΓD=2 ∼ e

−m2π
eE

+α̃π2κ2

limn→∞
c

(l)
4D

(n)

c
(1)
4D

(n)
=

(απ)l−1

(l − 1)!
↔ limn→∞

c
(l)
2D

(n)

c
(1)
2D

(n + l − 1)
=

(α̃π2)l−1

(l − 1)!
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The 2D Spinor QED EHL at one, two and three loops

I. Huet, D.G.C. McKeon and C.S., JHEP 12 (2010) 036

L(1)(κ) = −m2

4π

1

κ

[
lnΓ(κ)− κ(lnκ− 1) +

1

2
ln
( κ

2π

)]

L(2)(f ) =
m2

4π

α̃

4

[
ψ̃(κ) + κψ̃′(κ) + ln(λ0m2) + γ + 2

]
where

ψ̃(x) ≡ ψ(x)− ln x +
1

2x
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Weak-field expansion coefficients

Explicit formulas not only for c
(1)
2D (n) but c

(2)
2D (n):

c(1)(n) = (−1)n+1 B2n

4n(2n − 1)

c(2)(n) = (−1)n+1 α̃

8

2n − 1

2n
B2n

Using properties of the Bernoulli numbers Bn, we can easily verify
that

lim
n→∞

c(2)(n)

c(1)(n + 1)
= α̃π2
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Two-loop EHL in 2D Spinor QED

Rapid convergence of c(2)(n) to the asymptotic prediction:
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Three-loop EHL in 2D Spinor QED

I. Huet, M. Rausch de Traubenberg and C.S. 2015:
We computed the first coefficient analytically,

c3(0) =
(
−3

2
+

7

4
ζ(3)

) α̃2

64

and five more coefficients numerically. Using these in

limn→∞
c

(3)
2D (n)

c
(1)
2D (n + 2)

=
(α̃π2)2

2!
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Exponentiation at three loops

1 2 3 4 5

0.02

0.04

0.06

0.08

0.10

0.12

0.14

we fall even below the asymptotic prediction!
Exponentiation does not work in D = 2.
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Thank you for your attention!


