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QED Actions and Schwinger 
Effect in General EM Fields? 



QED Actions in Some EM Fields 
   

One-Loop QED 
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Dunne, Hall 

Kim, Lee, Yoon 



Schwinger Effects & QED Actions 

   

(Complex) 
Effective Actions 

Pair Production 
& Vacuum 
Persistence  

Worldline 
Instantons 

Dunne, Gies, 

Ilderton, Schubert  

Phase Integral 

Contour Integral 

Vacuum 
Polarization 

Feynman Worldline 
Path Integral Gies, Schubert 

Dirac-Heisenberg-
Wigner Formalism Alkofer, Gies 

Schwinger-DeWitt 
In-Out Formalism 



In-Out Formalism for QED Actions 
• In the in-out formalism, the vacuum persistence amplitude 

gives the effective action [Schwinger (‘51); DeWitt (‘75), (‘03)] 
and is equivalent to the Feynman integral 

                                                                  
                                                                     = 

 
• The complex effective action and the vacuum persistence for 

particle production 
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QED Actions at T=0 & T 
• Zero-temperature QED actions in proper-time integral via 

gamma-function regularization [SPK, Lee, Yoon, PRD (‘08), 
(‘10); SPK (‘11)]; gamma-function & zeta-function 
regularization [SPK, Lee (‘14)]; quantum kinematic 
approach [Bastianelli, SPK, Schubert, in preparation (‘15)] 
 

 
• finite-temperature effective action [SPK, Lee, Yoon, PRD 

(‘09), (‘10)] 
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Quantum Kinematic Approach 
• Quantum kinematic (functional Schrodinger) approach to 

QED in homogeneous E(t) or B(t): time-dependent quadratic 
Hamiltonian (Fourier and/or Landau level decomposition) 
 

 
• Quantum states via quantum invariants 

 
 

• QED action in terms of the mode solutions 
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Characterizing Quantum 
States of Charge in EM Fields 



Homogeneous EM Fields 
• 𝐸 𝑡  along a fixed direction 

– Klein-Gordon: sum of harmonic oscillators with real 
time-dependent frequencies 

– Dirac: harmonic motion with complex frequencies due to 
spin states 

• 𝐵 𝑡  with a fixed direction (𝐴 = 𝐵 × 𝑟/2) 
– Klein-Gordon: Landau levels continuously change 
– Dirac: Landau levels and eigenspinors continuously 

change 
 
 

 



More General EM Fields 
• 𝐸 𝑡  in 2 or 3 dimensions 

– Klein-Gordon: sum of harmonic oscillators with real 
time-dependent frequencies in each direction 

– Dirac: harmonic motion with complex frequencies due to 
spin states and eigenspinors continuously change 

• 𝐵 𝑡  in 2 or 3 dimensions? 
– Klein-Gordon: Landau levels and directions continuously 

change 
– Dirac: Landau levels, directions, and eigenspinors 

continously change 

• Generic 𝐴 𝑡, �⃗�  in 2 or 3 dimensions? Yes, convolution 
theorem in Fourier transformation. 

 
 
 

 



Quantum Kinematic Approach 
to E(t) and B(t)   



Wheeler-DeWitt (WDW) Equation  
vs Klein-Gordon (KG) Equation in B 

• Wheeler-DeWitt equation for quantum cosmology of a 
Friedmann-Robertson-Walker universe with a massive 
scalar field & Cauchy initial value problem [SPK (‘91); 
SPK, Page, PRD (‘92); SPK, PRD (‘92)]  
 
 

 
• Transverse motion of a charged scalar in time-dependent, 

homogeneous, magnetic field 𝐴(𝑡, 𝑟) = 𝐵(𝑡) × 𝑟/2 
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Landau Levels in Scalar QED in B(t)  
• Landau levels in 𝐴(𝑡, 𝑟) = 𝐵(𝑡) × 𝑟/2 for a time-dependent 

magnetic field with a fixed direction continuously make 
transitions among themselves [SPK, AP 344 (‘14)]:  
 
 

 
• The Cauchy data for KG equation 
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Classification of Quantum Motions  
• Dimensionless measure that characterizes the quantum 

motion of nth Landau level during any time interval 𝑡𝑖  , 𝑡𝑓   
 

 
• Classification of quantum motions 

 
 

 
• Schwinger pair production due to the change of the in-

vacuum or induced electric field 
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Second Quantized Scalar QED in E(t) 
• Scalar action in an EM field 

 
 
• Time-dependent Hamiltonian in E(t): time-dependent 

oscillators [SPK, AP 351 (‘14)] 
 

 
• Quantum invariant approach to quantum states, the in-

vacuum and out-vacuum, and quantum Vlasov equation for 
Schwinger pair production [Schubert’s talk] 
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Second Quantized Scalar QED in B(t) 
• Time-dependent Hamiltonian in Landau levels in B(t): time-

dependent coupled oscillators 
 
 
 

 
• Quantum invariant approach to annihilation and creation 

operators, quantum states, the in-vacuum and out-vacuum 
[SPK, AP 351 (‘14)]. 

• Classification of quantum motions: (i) adiabatic change, (ii) 
sudden change and (iii) nonadiabatic change. 
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Quantum Invariants 
• Time-dependent Hamiltonian in homogeneous E(t) or B(t)  

 
 
 

 
 

• Quantum invariants for annihilation and creation operators  
[Lewis, Riesenfeld (’69); SPK, Page (‘01)]  
 
 

• Quantum states  
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Spin Resonance and Pair 
Production in Rotating E Fields 

with Chul Min Kim (CoReLS/IBS) 



Rotating Electric Fields 
• Pair production in a rotating E field in Dirac-Heisenberg-

Wigner (DHW) formalism [Blinne, Gies, PRD (‘’14); Blinne, 
poster ExHILP], Dirac in WKB approximation [Strobel, 
Xue, NPB (‘14); PRD (‘15); Strobel, poster ExHILP]:  

 
 

• Spin-diagonal, two-component, second-order equation for 
Dirac equation 
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Instantaneous Eigenspinors 
• One set of eigenspinors 𝑣𝜆with eigenvalue 𝑖𝜆: 
 

 
 
 
 

• Another set of eigenspinors 𝑣𝜆with eigenvalue 𝑖𝜆−1: 
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Transformation of Eigenspinors 
• Orthonormality 𝑣𝑖+𝑣𝑗 = 𝛿𝑖𝑗 and the rate of the change of 

eigenspinors 
 

 
 
• Expand the Dirac spinor by eigenspinors and Fourier 

component 
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Evolution Equations 
• Evolution equation for the Fourier component 
 

 
 
 

 
• Evolution equation for the Dirac spinor 
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Two-Dimensional Electric Fields 
• Two-dimensional, homogeneous, time-dependent electric 

field  
 
• Eigenspinors 
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Conclusion 
• Quantum kinematic approach to charged scalar 

field in time-dependent electric or magnetic fields. 
– 𝐸 𝑡 : sum of time-dependent oscillators 
– 𝐵 𝑡 : sum of time-dependent coupled oscillators 

• Rotating or two-dimensional electric field induces 
continuously changing eigenspinors and leads to a 
spin-resonance effect.  

• Quantum kinematic approach may apply to Klein-
Gordon or Dirac equation in 𝐴 𝑡, �⃗�  with proper 
modifications and a hope is that it may be a new 
facet, not extravagance, to strong QED phenomena. 
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