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QED Actions and Schwinger
Effect in General EM Fields?
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In-Out Formalism for QED Actions

e In the in-out formalism, the vacuum persistence amplitude
gives the effective action [Schwinger (‘51); DeWitt (‘75), (‘03)]
and 1s equivalent to the Feynman integral
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QED Actions at T=0 & T

o Zero-temperature QED actions in proper-time integral via
gamma-function regularization [SPK, Lee, Yoon, PRD (‘08),
(‘10); SPK (‘11)]; gamma-function & zeta-function
regularization [SPK, Lee (‘14)]; quantum kinematic
approach [Bastianelli, SPK, Schubert, in preparation (‘15)]
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o finite-temperature effective action [SPK, Lee, Yoon, PRD
(‘09), (‘10)]
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Quantum Kinematic Approach

e Quantum kinematic (functional Schrodinger) approach to
QED in homogeneous E(t) or B(t): time-dependent quadratic
Hamiltonian (Fourier and/or Landau level decomposition)
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Characterizing Quantum
States of Charge in EM Fields



Homogeneous EM Fields

e E(t) along a fixed direction

— Klein-Gordon: sum of harmonic oscillators with real
time-dependent frequencies

— Dirac: harmonic motion with complex frequencies due to
spin states

e B(t) with a fixed direction (4 = B x #/2)
— Klein-Gordon: Landau levels continuously change

— Dirac: Landau levels and eigenspinors continuously
change



More General EM Fields

e E(t)in 2 or 3 dimensions

— Klein-Gordon: sum of harmonic oscillators with real
time-dependent frequencies in each direction

— Dirac: harmonic motion with complex frequencies due to
spin states and eigenspinors continuously change

e B(t) in 2 or 3 dimensions?
— Klein-Gordon: Landau levels and directions continuously
change

— Dirac' Landau levels, directions, and eigenspinors
continously change

e Generic A(t,x) in 2 or 3 dimensions? Yes, convolution
theorem in Fourier transformation.



Quantum Kinematic Approach
to E(t) and B(t)



Wheeler-DeWitt (WDW) Equation
vs Klein-Gordon (KG) Equation in B

Wheeler-DeWitt equation for quantum cosmology of a
Friedmann-Robertson-Walker universe with a massive

scalar field & Cauchy initial value problem [SPK (‘91);
SPK, Page, PRD (‘92); SPK, PRD (‘92)]

time-dependent oscillator
.
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 Transverse motion of a charged scalar in time-dependent,
homogeneous magnetic field A(t,7) = B(t) X 7#/2
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Landau Levels in Scalar QED in B(t)

e Landau levels in A(t,7) = B(t) x #/2 for a time-dependent
magnetic field with a fixed direction continuously make
transitions among themselves [SPK, AP 344 (‘14)]:
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Classification of Quantum Motions

Dimensionless measure that characterizes the quantum
motion of nth Landau level during any time interval (ti , tf)
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Classification of quantum motions

(R <<1: adiabatic motion

\

R, >>1:sudden change
R, ®O(1) : nonadiabatic change

Schwinger pair production due to the change of the in-
vacuum or induced electric field
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Second Quantized Scalar QED in E(t)

e Scalar action in an EM field
S = jdtdBX[n“V(éﬂ +igA, )¢*(8ﬂ - iqAﬂ)¢— m2¢*¢]

e Time-dependent Hamiltonian in E(t): time-dependent
oscillators [SPK, AP 351 (‘14)]
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e Quantum invariant approach to quantum states, the in-
vacuum and out-vacuum, and quantum Vlasov equation for

Schwinger pair production [Schubert’s talk]




Second Quantized Scalar QED in B(t)

e Time-dependent Hamiltonian in Landau levels in B(t): time-
dependent coupled oscillators
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 Quantum invariant approach to annihilation and creation
operators, quantum states, the in-vacuum and out-vacuum

[SPK, AP 351 (‘14)].

o Classification of quantum motions: (i) adiabatic change, (i1)
sudden change and (iii) nonadiabatic change.



Quantum Invariants

e Time-dependent Hamiltonian in homogeneous E(t) or B(t)
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e Quantum invariants for annihilation and creation operators
[Lewis, Riesenfeld (69); SPK, Page (‘01)]
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Spin Resonance and Pair
Production in Rotating E Fields

with Chul Min Kim (CoReLS/IBS)



Rotating Electric Fields

e Pair production in a rotating E field in Dirac-Heisenberg-
Wigner (DHW) formalism [Blinne, Gies, PRD (“14); Blinne,
poster ExXHILP], Dirac in WKB approximation [Strobel,
Xue, NPB (‘14); PRD (‘15); Strobel, poster ExHILP]:

E(t) = (E(t)cosQt, E(t)sinQt, 0)

 Spin-diagonal, two-component, second-order equation for
Dirac equation

(

82
—+
ot’

(|V+eA(t)) +m ]IM ie[

0
&-E(t)

&-E(t)

0

)

Y(t,x)=0



Instantaneous Eigenspinors

e One set of eigenspinors v;with eigenvalue i*:
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Transformation of Eigenspinors

e Orthonormality v;*v; = §;; and the rate of the change of
J J

e1genspinors
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 Expand the Dirac spinor by eigenspinors and Fourier
component
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Evolution Equations

e Evolution equation for the Fourier component
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Two-Dimensional Electric Fields

 Two-dimensional, homogeneous, time-dependent electric
field

E(t)=(E, (), E, (t), 0), &(t) = E,(t)+iE, (t) = E(t)e”®

 Kigenspinors
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Conclusion

e Quantum kinematic approach to charged scalar
field in time-dependent electric or magnetic fields.
— E(t): sum of time-dependent oscillators
— B(t): sum of time-dependent coupled oscillators

 Rotating or two-dimensional electric field induces
continuously changing eigenspinors and leads to a
spin-resonance effect.

 Quantum kinematic approach may apply to Klein-

Gordon or Dirac equation in A(t, ¥) with proper
modifications and a hope 1s that it may be a new
facet, not extravagance, to strong QED phenomena.
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