Towards experimental measurements of nonlinear QED effects in ultra-intense laser-matter interactions

<u>**C. P. Ridgers</u>¹, C. S. Brady², T. Blackburn³, J.G. Kirk⁴, R.Duclous⁵, P. Zhang⁶, A.G.R. Thomas⁶, D.Stark⁷, A. Arefiev⁷, K. Bennett², T.D. Arber² & A.R. Bell³</u>**

1. University of York, 2. University of Warwick, 3. University of Oxford,

4. Max-Planck Institute for Nuclear Physics, 5. CEA, Arpajon 6. University of Michigan

7. University of Texas

Outline

- Introduction
- Modelling the QED processes
- Laser-electron beam collider experiments
- QED+plasma experiments

Outline

- Introduction
- Modelling the QED processes
- Laser-electron beam collider experiments
- QED+plasma experiments

Rapid Increase in Laser Intensity

Why is the New Regime Interesting?

Fundamental Physics

Astrophysics: analogue to pulsar atmospheres

Strong-field QED

New Applications

Existing Applications

Why is the New Regime Interesting?

Fundamental Physics

Astrophysics: analogue to pulsar atmospheres

Strong-field QED

New Applications

Prolific positron production

Generate ultra-intense bursts of gamma-rays

Existing Applications

Why is the New Regime Interesting?

Fundamental Physics

Astrophysics: analogue to pulsar atmospheres

Strong-field QED

New Applications

Prolific positron production

Generate ultra-intense bursts of gamma-rays

Existing Applications

Accelerate electrons & ions to multi-GeV energies

Field does work $\sim m_e^2 \text{ over } \lambda_c$

$$E_{s} = \frac{2\pi m_{e}c^{2}}{e\lambda_{c}} = 1.3 \times 10^{18} Vm^{-1} \qquad I_{s} = 2 \times 10^{29} Wcm^{-2}$$

Field does work $\sim m_e^2 \text{ over } \lambda_c$

$$E_{s} = \frac{2 \pi m_{e} c^{2}}{e \lambda_{c}} = 1.3 \times 10^{18} Vm^{-1} \qquad I_{s} = 2 \times 10^{29} Wcm^{-2}$$

$$\eta \sim E/E_{s} \text{ in rest frame} \qquad \text{In lab frame: } \eta \approx \frac{\gamma}{E_{s}} |E_{\perp} + v \times B|$$

Field does work $\sim m_{d}c^{2}$ over λ_{d} $E_{s} = \frac{2\pi m_{e}c^{2}}{e\lambda} = 1.3 \times 10^{18} Vm^{-1} \qquad I_{s} = 2 \times 10^{29} Wcm^{-2}$ $\eta \sim E/E_s$ in rest frame In lab frame: $\eta \approx \frac{\gamma}{E_s} |E_{\perp} + v \times B|$ Assume $\gamma \sim a$ $a = \frac{e E_{laser}}{m_e c \omega_{laser}}$ $|E_{\perp} + v \times B| \sim E_{laser}$

Field does work $\sim m_{a}c^{2}$ over λ_{c} $E_{s} = \frac{2\pi m_{e}c^{2}}{e\lambda} = 1.3 \times 10^{18} Vm^{-1} \qquad I_{s} = 2 \times 10^{29} Wcm^{-2}$ $\eta \sim E/E_s$ in rest frame In lab frame: $\eta \approx \frac{\gamma}{E_s} |E_{\perp} + v \times B|$ Assume $\gamma \sim a$ $a = \frac{e E_{laser}}{m_e c \omega_{laser}} |E_{\perp} + v \times B| \sim E_{laser}$ $\eta \sim 0.1 \frac{I}{5 \times 10^{22} W cm^{-2}}$ Puting these into formula for η

The QED+Plasma Regime

$$\eta \sim 0.1 \frac{I}{5 \times 10^{22} W cm^{-2}}$$

FEEDBACK QED processes Classical Plasma

Physics

C.P. Ridgers, et al, PRL, 108, 165006 (2012)

What can we do with PW-class lasers (I~10²¹Wcm⁻²)?

$$\eta \approx \frac{\gamma}{E_s} | \boldsymbol{E}_{\perp} + \boldsymbol{v} \times \boldsymbol{B} |$$

What can we do with PW-class lasers (I~10²¹Wcm⁻²)?

Increase by accelerating $H \approx E_s |E_s + v \times B|$ Increase by increasing laser intensity

What can we do with PW-class lasers (I~10²¹Wcm⁻²)?

Increase by accelerating electrons

 $\neg \eta \approx \underbrace{Y}_{E_s} | E_{v} + v \times B |$

Increase by increasing laser intensity

Accelerate electrons to high energy $\gamma \gg a$

I.V. Sokolov, et al, PRL, 105, 195005 (2010)

What can we do with PW-class lasers (I~10²¹Wcm⁻²)?

Increase by accelerating electrons

$$\neg \eta \approx \underbrace{\left| \left| E \right| + v \times B \right|}_{E_s}$$

Increase by increasing laser intensity

Accelerate electrons to high energy $\gamma \gg a$

$$\eta \sim 0.1 \frac{\gamma}{1000} \sqrt{\frac{I}{10^{21} W cm^{-2}}}$$

I.V. Sokolov, et al, PRL, 105, 195005 (2010)

Outline

- Introduction
- Modelling the QED processes
- Laser-electron beam collider experiments
- QED-plasma experiments

1. Split EM field into 'low frequency' (laser-fields) & 'high frequency' (gamma-rays) components

C.P. Ridgers et al, J Comp Phys, 260, 273 (2014)

1. Split EM field into 'low frequency' (laser-fields) & 'high frequency' (gamma-rays) components

2. 'Low frequency' fields are treated classically

1. Split EM field into 'low frequency' (laser-fields) & 'high frequency' (gamma-rays) components

- 2. 'Low frequency' fields are treated classically
- 3. Use strong-field QED basis states dressed by fields

1. Split EM field into 'low frequency' (laser-fields) & 'high frequency' (gamma-rays) components

- 2. 'Low frequency' fields are treated classically
- 3. Use strong-field QED basis states dressed by fields

4. Keep lowest order interactions between electrons, positrons, gamma-rays with classical low frequency fields

Quasi-static=> emission pointlike

J.G. Kirk *et al*, PPCF, 51, 085008 (2009) V.N. Baier, 'High Energy Processes in Aligned Single Crystals'

1. Formation length $= 1/a \ll 1$ Laser wavelength

Quasi-static=> emission pointlike

2. E<<E_s "Weak"-field

J.G. Kirk *et al*, PPCF, 51, 085008 (2009) V.N. Baier, 'High Energy Processes in Aligned Single Crystals'

1. Formation length $= 1/a \ll 1$ Laser wavelength

Quasi-static=> emission pointlike

2. $E << E_s$ "Weak"-field

Photon emission depends on

Calculate emission rates in any convenient configuration with $E,cB << E_{c}$.

Constant crossed-field – synchrotron emission Plane EM wave – nonlinear Compton scattering

1. Formation length $= 1/a \ll 1$ Laser wavelength

Quasi-static=> emission pointlike

2. $E << E_s$ "Weak"-field

Photon emission depends on

Calculate emission rates in any convenient configuration with $E,cB << E_{s}$.

Constant crossed-field – synchrotron emission Plane EM wave – nonlinear Compton scattering

Motion of electrons, positrons is classical between emission events

J.G. Kirk et al, PPCF, 51, 085008 (2009); V.N. Baier, 'High Energy Processes in Aligned Single Crystals'

Model Validity

INTENSITY/Wcm⁻²

 $10^{20} \quad 10^{21} \quad 10^{22} \quad 10^{23} \quad 10^{24} \quad 10^{25} \quad 10^{26}$

Two assumptions:

1. Quasi-static => a>>1

2. Weak-field => $I << 10^{29} Wcm^{-2}$

Model Validity

Two assumptions:

1. Quasi-static => a>>1

2. Weak-field => $I << 10^{29} Wcm^{-2}$

Model Validity

Two assumptions:

1. Quasi-static => a>>1

2. Weak-field => $I << 10^{29} W cm^{-2}$

$$\frac{Energy\ emitted}{\gamma_{osc}\ m_e\ c^2} \sim \left(\frac{\eta}{0.1}\right)^{1.5}$$

 $\eta > 0.1$ radiation reaction important $\overline{\rho^{\mu}}$

p'n

$$\frac{Energy \ emitted}{\gamma_{osc} \ m_e \ c^2} \sim \left(\frac{\eta}{0.1}\right)^{1.5}$$

 $\eta > 0.1 \ radiation \ reaction \ important$
Photon energy = 0.44 η X Electron energy

 n^{μ}

22

$$\frac{Energy\ emitted}{\gamma_{osc}\ m_e\ c^2} \sim \left(\frac{\eta}{0.1}\right)^{1.5}$$

 η >0.1 radiation reaction important

Photon energy = 0.44η X Electron energy **Quantum effects**

(1) Power reduced $P = P_c g(\eta)$

n^µ

$$\frac{Energy\ emitted}{\gamma_{osc}\ m_e\ c^2} \sim \left(\frac{\eta}{0.1}\right)^{1.5}$$

 η >0.1 radiation reaction important

Photon energy = 0.44η X Electron energy **Quantum effects**

(1) Power reduced $P = P_c g(\eta)$ (2) Probabilistic treatment necessary **Classical**

$$\frac{d \boldsymbol{p}}{dt} = -e(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) - \frac{\boldsymbol{p}}{\tau_{RD}}$$

 n^{μ}

$$\frac{Energy\ emitted}{\gamma_{osc}\ m_e\ c^2} \sim \left(\frac{\eta}{0.1}\right)^{1.5}$$

 η >0.1 radiation reaction important

Photon energy = 0.44η X Electron energy

Quantum effects

(1) Power reduced $P = P_c g(\eta)$

(2) Probabilistic treatment necessary

Classical

$$\frac{d \boldsymbol{p}}{dt} = -\boldsymbol{e}\left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}\right) - \frac{\boldsymbol{p}}{\boldsymbol{\tau}_{RD}}$$

Lorentz force Radiation reaction

$$\frac{Energy\ emitted}{\gamma_{osc}\ m_e c^2} \sim \left(\frac{\eta}{0.1}\right)^{1.5}$$

 η >0.1 radiation reaction important

Photon energy = 0.44η X Electron energy

Quantum effects

(1) Power reduced
$$P = P_c g(\eta)$$

(2) Probabilistic treatment necessary

Classical

 $\frac{d \boldsymbol{p}}{dt} = -\boldsymbol{e}\left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}\right) - \boldsymbol{\tau}_{RD}$

Quantum

 n^{μ}

$$\Delta p = -\sum \hbar k$$

A. DiPiazza et al, Phys Rev Lett, 105, 220403 (2010)

$$\frac{Energy\ emitted}{\gamma_{osc}\ m_e c^2} \sim \left(\frac{\eta}{0.1}\right)^{1.5}$$

 η >0.1 radiation reaction important

Photon energy = 0.44η X Electron energy

Quantum effects

(1) Power reduced $P = P_c g(\eta)$

(2) Probabilistic treatment necessary

(3) Pair production

 n^{μ}

A. DiPiazza et al, Phys Rev Lett, 105, 220403 (2010)
Photon emission

$$\frac{Energy\ emitted}{\gamma_{osc}\ m_e c^2} \sim \left(\frac{\eta}{0.1}\right)^{1.5}$$

 η >0.1 radiation reaction important

- Photon energy = 0.44η X Electron energy **Quantum effects**
- (1) Power reduced $P = P_c g(\eta)$ (2) Probabilistic treatme (3) Pair production

A. DiPiazza et al, Phys Rev Lett, 105, 220403 (2010)

Outline

- Introduction
- Modelling the QED processes
- Laser-electron beam collider experiments
- QED+plasma experiments

Electron Beam – Laser Pulse Collisions

$$\eta \sim 0.1 \frac{\gamma}{1000} \sqrt{\frac{I}{10^{21} W cm^{-2}}}$$

What can we learn from this?

 Probe strong-field QED
 Physics underpinning 10PW and pulsar magnetospheres

1. SLAC E-144

>40GeV electron beam from 'standard' particle accelerator

Collides with laser intensity 10¹⁸-10¹⁹Wcm⁻²

Saw Compton scattering and Breit-Wheeler pair production in weakly non-linear (NOT quasi-static) regime

> C. Bula *et al*, Phys Rev Lett, 76, 3116 (1996) D. Burke *et al*, Phys Rev Lett, 79, 1626 (1998)

1. SLAC E-144 \rightarrow weakly non-linear

2. CERN SPS

100GeV electron beam from 'standard' particle accelerator Collides with crystal \rightarrow electric fields 10¹³Vm⁻¹

Saw synchrotron radiation in strongly nonlinear (quasi-static) regime \rightarrow measured g(η)

K. Andersen, et al, Phys Rev D, 86, 072001 (2012)

1. SLAC E-144 \rightarrow weakly non-linear

2. CERN SPS \rightarrow strongly non-linear synchrotron radiation

3. 'All-optical'

~hundreds of MeV electron beam from laser wakefield accelerator Collides with laser intensity 10¹⁸-10¹⁹Wcm⁻² Evidence of Compton scattering in the weakly non-linear regime

K. TaPhouc et al, Nat. Photonics, 6, 308 (2012)

- N. Powers et al, Phys Rev Lett, 8. 28 (2014)
- G. Sarri et al, Phys Rev Lett, 113, 224801 (2015)

- 1. SLAC E-144 \rightarrow weakly non-linear
- 2. CERN SPS \rightarrow strongly non-linear synchrotron radiation
- 3. 'All-optical' \rightarrow weakly non-linear

What next?

Quantum radiation reaction in very nonlinear regime

Pair production?

Electron Beam – Laser Pulse Collisions

$$\eta \sim 0.1 \frac{\gamma}{1000} \sqrt{\frac{I}{10^{21} W cm^{-2}}}$$

 $\eta \sim 0.1$ $I \sim 10^{21} W cm^{-2}$ $\gamma \sim 1000$

Electron Beam – Laser Pulse Collisions

Photon emission

 n^{μ}

$$\frac{Energy\ emitted}{\gamma_{osc}\ m_e c^2} \sim \left(\frac{\eta}{0.1}\right)^{1.5}$$

 η >0.1 radiation reaction important

Photon energy = 0.44η X Electron energy **Quantum effects**

(1) Include electron recoil $P = P_c g(\eta)$ (2) Probabilistic treatment necessary **Classical** $\frac{d p}{dt} = -e(E + v \times B) - \frac{p}{\tau_{RD}}$ Lorentz force Radiation reaction

Problem → alignment of electron beam and laser pulse

T.G. Blackburn et al, PPCF, 57, 075012 (2015)

Problem → alignment of electron beam and laser pulse

Misalignment strongly reduces emitted power

T.G. Blackburn et al, PPCF,57, 075012 (2015)

Electron Beam – Laser Pulse Collisions

$$\eta \sim 0.1 \frac{\gamma}{1000} \sqrt{\frac{I}{10^{21} W cm^{-2}}}$$

 $\eta \sim 1$ $I \sim 10^{22} W cm^{-2}$ $\gamma \sim 4000$

Electron Beam – Laser Pulse Collisions

Outline

- Introduction
- Modelling the QED processes
- Laser-electron beam collider experiments
- QED+plasma experiments

The QED+Plasma Regime

$$\eta \sim 0.1 \frac{I}{5 \times 10^{22} W cm^{-2}}$$

FEEDBACK QED processes Classical Plasma

Physics

C.P. Ridgers, et al, PRL, 108, 165006 (2012)

Feedback: Plasma Physics → QED

Rates

Photon production:

$$\frac{dN_{\gamma}}{dt} = \frac{\sqrt{3} \alpha_f}{2 \pi \tau_C} \frac{\eta}{\gamma} h(\eta)$$
$$\eta = \frac{\gamma}{E_s} (\boldsymbol{E}_{\perp} + \boldsymbol{v} \times \boldsymbol{B})$$

Pair production:

$$\frac{dN_{\pm}}{dt} = \frac{\alpha_f}{\tau_c} \frac{m_e c^2}{h\nu} \chi T_{\pm}(\chi)$$
$$\chi = \frac{h\nu}{2m_e c^2 E_s} (\boldsymbol{E}_{\perp} + \boldsymbol{\hat{k}} \times \boldsymbol{B})$$

Feedback: Plasma Physics \rightarrow **QED**

Rates

Determined by
parameters that depend on
$$\eta = \frac{\gamma}{E_s} (E_{\perp} + v \times B)$$

JAT

$$\frac{dN_{\pm}}{dt} = \frac{\alpha_f}{\tau_c} \frac{m_e c^2}{h\nu} \chi T_{\pm} \chi$$

$$\chi = \frac{h\nu}{2m_e c^2 E_s} (E_{\perp} + \hat{k} \times B)$$

Feedback: Plasma Physics \rightarrow **QED**

Rates

Determined by
parameters that depend on.
$$\frac{dN_{y}}{dt} = \frac{\sqrt{3} \alpha_{f}}{2 \pi \tau_{c}} \gamma_{t} \gamma_{t}$$

...electron motion & local fields

$$\frac{dN_{\pm}}{dt} = \frac{\alpha_f}{\tau_c} \frac{m_e c^2}{h\nu} \chi T_{\pm} \chi$$

$$\chi = \frac{h\nu}{2m_e c^2 E_s} (E_{\pm} k R)$$

Feedback: Plasma Physics \rightarrow **QED**

Rates

Determined by
parameters that depend on.
$$\eta = \underbrace{\begin{array}{c} \sqrt{3} \alpha_{f} \\ 2\pi\tau_{c} \end{array}}_{E_{s}} \underbrace{\begin{array}{c} \sqrt{3} \alpha_{f} \end{array}}_{E_{s}} \underbrace{\begin{array}$$

...electron motion & local fields

$$\frac{dN_{\pm}}{dt} = \frac{\alpha_f}{\tau_c} \frac{m_e c^2}{h\nu} (\chi T_{\pm})$$

$$\chi = \frac{h\nu}{2m_e c^2 E_s} (E + \hat{k} \times B)$$

Determined by plasma physics

Feedback: QED \rightarrow **Plasma Physics**

(1) Radiation reaction

$$\frac{d \mathbf{p}}{dt} = -\mathbf{e}\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right) + \text{PHOTON}_{\text{EMISSION}}$$

Lorentz Radiation force reaction force

Equation of motion modified \rightarrow

Plasma physics modified

Feedback: QED \rightarrow **Plasma Physics**

(1) Radiation reaction

$$\frac{d \mathbf{p}}{dt} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) + \text{PHOTON}_{\text{EMISSION}}$$

force

Equation of motion modified \rightarrow

Plasma physics modified

reaction force

(2) Prolific pair production: 1 pair per electron per laser period

Summary: Physics of the New Regime

FEEDBACK QED processes Classical Plasma Physics

Summary: Physics of the New Regime

FEEDBACK QED processes **Classical Plasma** Radiation reaction & sources modify Physics **Fields alter QED** rates **currents**

Laser-Plasma Interactions are Complicated

Adding QED Emission Processes to PIC

(1) Laser fields may be treated classically

- (2) Quasi-static (a>>1) => pointlike emission
- (3) "Weak" field ($E << E_s$) => rates in arbitrary fields = rates in const B-field & motion classical

(4) Emitted photon energy >> laser photon energy => incoherent

C.P. Ridgers et al, J Comp Phys, 260, 273 (2014)

Why is the New Regime Interesting?

Fundamental Physics

Astrophysics: analofue to pulsar atmospheres

Depend on plasma physics

New Applications

Prolific positron production

Generate ultra-intense bursts of gamma-rays

Existing Applications

Accelerate electrons & ions to multi-GeV energies

Example effect on relativistic transparency

P. Zhang et al, New J Phys, 17, 043051 (2015)
Example effect on relativistic transparency

P. Zhang et al, New J Phys, 17, 043051 (2015)

QED+plasma at ~10²²Wcm⁻²

$$\eta \sim 0.1 \frac{I}{5 \times 10^{22} W cm^{-2}}$$

QED+plasma at ~10²²Wcm⁻²

$$\eta \sim 0.1 \frac{\gamma}{1000} \sqrt{\frac{I}{10^{21} W cm^{-2}}}$$

Plasma processes in extended pre-plasma accelerate electrons to γ >>a

A. Arefiev, AIP Conf Proc, 1507, 363 (2012)

1. QED processes will play a major role in plasmas created by next generation lasers

Conclusions

1. QED processes will play a major role in plasmas created by next generation lasers

2. By accelerating electrons to high energy these processes can be studied using today's PW lasers

Conclusions

1. QED processes will play a major role in plasmas created by next generation lasers

 By accelerating electrons to high energy these processes can be studied using today's PW lasers

3. Plasma processes can potentially be used to study the interaction between QED and plasma processes with PW-class lasers

Outlook

	Near-term					
	expe	rimen	ts			
		ΝΤΕ	NSIT	TY/W	cm ⁻²	
20	a 21			24	4 a 25	1026
10^{20} 1	.021	1022	10^{23}	10^{24}	10^{25}	10-0

Outlook

1. Benchmark QED model → measure quantum effects on radiation reaction

Outlook

