# Quantum relativistic dynamics and QED effects in multi-center systems

François Fillion-Gourdeau<sup>1,2,5</sup> A.D. Bandrauk<sup>3,5</sup>, E. Lorin<sup>4,5</sup>

<sup>1</sup>INRS-EMT <sup>2</sup> Institute for Quantum Computing <sup>3</sup> Université de Sherbrooke <sup>4</sup> Carleton University <sup>5</sup> CRM

Heidelberg, July 22nd 2015

# Outline

### Pair production in multi-center systems

- Pair creation mechanisms
- Model description
- Pair production in inhomogeneous field
- Numerical results for pair production
  - Position of resonances and pair production
  - Total Rate: REPP and ECEPP

### 2 Numerical solution of the Dirac equation

- Dirac equation description
- Balance principles
- Numerical results: time-independent
- Time-dependent generalization

### Conclusion

Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

# Pair production in multi-center systems

#### Pair creation mechanisms

Model description Pair production in inhomogeneous field Numerical results for pair production

# Pair creation mechanisms with an external field



Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

# Two-center systems (diatomic "molecule")



- $R \approx 10.$  a.u.
- $mc^2 \approx 18769.$  a.u.
- $E_g^{U^{91+}} \approx 13908.$  a.u.



### Questions?

- Can we use effects similar from non-relativistic ionization of molecules to enhance pair production (CREI)?
- Stark effect at large inter-nuclei distance:

$$\Delta E_{
m Stark} pprox \pm rac{FR}{2} pprox 2mc^2$$

Use Stark's effect to "plunge" in the Dirac sea



Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

# Simple model description

- (Very) Simple toy model
  - 1-D model
  - 2 Nuclei potential: delta function wells

$$V_{
m nucl.}(s) = -g \sum_{i=1}^{N_{
m nucl}} \delta(x - R_i)$$
 $g pprox 0.8 = U^{91+}$ 

Laser electric field: static (adiabatic limit) V<sub>field</sub>(x) = -Fx

### Spectral density



Position of resonances  $\rightarrow \mathsf{WTK}$ 

Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

# Pair production = Transmission-reflection problem



э

Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

# Position of resonances and pair production: g = 0.8(Uranium), $F = 0.2 \times 10^{18}$ V/m $\rightarrow I = 2.5 \times 10^{27}$ W/cm<sup>2</sup>



- **()** Channel 1: ground state crosses with negative energy resonances
- Ochannel 2: excited state goes through avoided crossing with positive energy resonances
- Ochannel 3: negative energy states cross with positive energy states

Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

# Total rate: $d\langle n \rangle / dt$

For 
$$g = 0.8$$
 (Uranium),  
 $F = 0.09 \times 10^{18}$  V/m  $\rightarrow I = 8.1 \times 10^{26}$  W/cm<sup>2</sup>,  
 $L = 100.0 \times 0.38$  pm



REPP at large *R*, dominated by the ground state crossings
ECEPP at small *R*

F. Fillion-Gourdeau et al, Phys. Rev. Lett. 110, 013002 (2013)

Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

< 17 ▶

# **REPP:** at LARGE interatomic distance



F. Fillion-Gourdeau et al, Phys. Rev. Lett. 110, 013002 (2013)

### Mechanism: CREI

T Seideman, MY Ivanov, PB Corkum , Phys. Rev. Lett. 75, 2819 (1995) T. Zuo and A. D. Bandrauk , Phys. Rev. A. 52, R2511 (1995)

Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

イロト イヨト イヨト

- ∢ ≣ →

э

## ECEPP: at SMALL interatomic distance



Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

## Many-center case: 5 nuclei

F = 0.05  $\times$  10^{18} V/m  $\rightarrow$  I = 2.5  $\times$  10^{26} W/cm^2



F. Fillion-Gourdeau

Pair creation mechanisms Model description Pair production in inhomogeneous field Numerical results for pair production

# Total rate: variation with electric field strength (g = 0.8)





- Relative enhancement increases
- REPP occurs at larger R
- Exponential suppression of the rate

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

# Numerical solution of the Dirac equation

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

< 🗇 🕨

# **Dirac Equation**

• Time-dependent:

$$i\partial_t \Psi(x) = \left[-i c oldsymbol{lpha} \cdot 
abla - e oldsymbol{lpha} \cdot oldsymbol{A}(x) + eta m c^2 + V(x)
ight] \Psi(x)$$

where  $\Psi(x) \in L^2(\mathbb{R}^3) \otimes \mathbb{C}^4$ 

• Time-independent:

$$E\psi(\mathbf{x}) = \left[-ic\boldsymbol{\alpha}\cdot\nabla + \beta mc^2 + V(\mathbf{x})\right]\psi(\mathbf{x})$$

Large and small components are related:

$$\chi(\mathbf{x}) = \frac{-ic\boldsymbol{\sigma}\cdot\nabla}{E + mc^2 - V_c(\mathbf{x})}\phi(\mathbf{x})$$

• **A**, *V* are the potentials of the external field (minimal coupling prescription)

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

# Numerical challenge

- Computation time:
  - Time step is small:  $\delta t < 1/mc^2$
  - Typical time scale of macroscopic field is large
  - Many initial and final states to consider (for pair production calculations)

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

# Numerical challenge

- Computation time:
  - Time step is small:  $\delta t < 1/mc^2$
  - Typical time scale of macroscopic field is large

Multiscale problem

• Many initial and final states to consider (for pair production calculations)

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

# Numerical challenge

- Computation time:
  - Time step is small:  $\delta t < 1/mc^2$
  - Typical time scale of macroscopic field is large

Multiscale problem

• Many initial and final states to consider (for pair production calculations)

Basis set expansion (Galerkin method or Rayleigh-Ritz method)

$$m{E} \leq rac{\langle \psi_0 | m{H} | \psi_0 
angle}{\langle \psi_0 | \psi_0 
angle}$$

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

# Numerical challenge

- Computation time:
  - Time step is small:  $\delta t < 1/mc^2$
  - Typical time scale of macroscopic field is large

Multiscale problem

• Many initial and final states to consider (for pair production calculations)

Basis set expansion (Galerkin method or Rayleigh-Ritz method)

Spectrum is NOT bounded from below



Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

# Balance principles for time-independent Dirac

• Basis set expansion with balance principle (W Kutzelnigg, 1984):

$$\phi_{s}(\mathbf{x}) = \sum_{n=1}^{N} a_{n}^{(s)} B_{n}^{(s)}(\mathbf{x})$$
$$\chi_{s}(\mathbf{x}) = (\hat{L}_{b})_{ss'} \sum_{n=1}^{N} c_{n}^{(s')} B_{n}^{(s')}(\mathbf{x})$$

Possible choices:

- Usual variational method:
- Kinematic balance:

$$\hat{L}_{KB} = rac{1}{2mc^2} oldsymbol{lpha} \cdot oldsymbol{p}$$

• Atomic balance:

$$\hat{L}_{AB} = rac{1}{2mc^2 - V_c} oldsymbol{lpha} \cdot oldsymbol{p}$$

$$\begin{aligned} \mathcal{E}[\psi] &= \langle \phi | (V_c + mc^2) \phi \rangle_{L^2} + \langle R_0 \phi | \chi \rangle_{L^2} \\ &+ \langle \chi | R_0 \phi \rangle_{L^2} + \langle \chi | (V_c - mc^2) \chi \rangle_{L^2} \\ &- E \left[ \langle \phi | \phi \rangle_{L^2} - \langle \chi | \chi \rangle_{L^2} \right], \end{aligned}$$

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

## Balance principles and spectral pollution

#### Theorem (Lewin *et al*,2010)

Assuming that  $V_c$  is such that  $V_c(x) \ge -\kappa |x|^{-1}$  for  $\kappa \in (0, 3/2)$  with  $\sup(V_c) < 2$ ,  $(2 - V_c)^{-2} \nabla V_c \in L^{\infty}(\mathbb{R}^3)$  and  $\max(V_c, 0) \in L^p(\mathbb{R}^3)$  with p > 3 and  $V_c(x) \to_{\infty} 0$ , then

$$Spu(H_0 + V_c, P, L_{AB}) = [-1, -1 + \sup(V_c)]$$

For mere mortals:

For Coulomb potentials, the spurious spectrum is always empty.



Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

# Implementation details

• Prolate spheroidal coordinates



• B-spline basis functions:

$$B_{n}^{(1,2)}(\xi,\eta) = G^{(1,2)}(\xi,\eta)b_{i}^{k_{\xi}}(\xi)b_{j}^{k_{\eta}}(\eta)$$

Ca = ESa

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

< 🗇 🕨

**∃** ⊳

# Numerical results: time-independent

| Eigenenergies of Th <sub>2</sub> <sup>179+</sup> |               |                 |                |
|--------------------------------------------------|---------------|-----------------|----------------|
| States                                           | Naive RR      | Kinetic Balance | Atomic Balance |
| 1                                                | -9504.7243225 | -9504.7475523   | -9504.6416456  |
| 2                                                | -6815.4657298 | -6815.5599111   | -6815.3865298  |
| 3                                                | -4127.8877478 | -4128.1451137   | -4127.8457787  |
| 4                                                | -3374.5117016 | -3374.5143753   | -3374.4767336  |
| 5                                                | -2564.1559253 | -2564.1719708   | -2564.0918230  |
| 6                                                | -2455.9537953 | -2455.9600280   | -2455.9016668  |
| 7                                                | -2010.6535604 | -2010.4321103   | -2010.4261981  |
| 8                                                | -1918.4056980 | -1915.7178408   | -1915.6853488  |
| 9                                                | -1649.2929148 | -1643.9543595   | -1643.9395109  |
| 10                                               | -1344.0855870 | -1313.8071916   | -1313.7699129  |
| 11                                               | -1333.5368147 | -1303.6850950   | -1303.6660492  |
| spurious                                         | -1204.6990945 |                 |                |
| 12                                               | -1159.1761393 | -1089.6415827   | -1089.6370783  |
| 13                                               | -1131.0151665 | -1084.3699127   | -1084.3522895  |
| 14                                               | -1045.4764538 | -1028.1920826   | -1028.1920249  |
| 15                                               | -984.5252901  | -969.6816867    | -969.6482618   |

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

## Wave function and convergence



#### Ground state energy



э

∃ ≥ >

# Generalization to time-dependent: Galerkin method

• For the same (almost...) price: time-dependent Galerkin method

$$a_n, c_n 
ightarrow a_n(t), c_n(t)$$

Project on Basis functions (Galerkin method)

$$\langle \mathcal{B}_j | i \partial_t \psi \rangle_{L^2(\mathbb{R}^3,\mathbb{C}^4)} = \langle \mathcal{B}_j | H \psi \rangle_{L^2(\mathbb{R}^3,\mathbb{C}^4)}, \text{ for } j \in \{1,\cdots,N\}$$

 $i\mathbf{S}\dot{\mathbf{a}}(t) = (\mathbf{C} + \mathbf{D}(t))\mathbf{a}(t)$ 

• Time discretization: Unitary Crank-Nicolson

$$\mathbf{S}\mathbf{a}^{n+1} = \mathbf{S}\mathbf{a}^n - i\frac{\Delta t_n}{2}(\mathbf{C} + \mathbf{D}^n)\mathbf{a}^n - i\frac{\Delta t_n}{2}(\mathbf{C} + \mathbf{D}^{n+1})\mathbf{a}^{n+1}$$

Dirac equation description Balance principles Numerical results: time-independent Time-dependent generalization

# Numerical results: H<sub>2</sub><sup>+</sup> in a laser field





æ

F. Fillion-Gourdeau



# Conclusion

- Schwinger pair production in a multi-center system
  - Position of resonances

F. Fillion-Gourdeau et al, 2012 J. Phys. A: Math. Theor. 45 215304

- Two mechanisms that enhance pair production rate:
  - At large R: REPP
  - At small R: ECEPP

F. Fillion-Gourdeau et al, Phys. Rev. Lett. 110, 013002 (2013)

F. Fillion-Gourdeau et al, 2013 J. Phys. B: At. Mol. Opt. Phys. 46 175002

- Galerkin methods for the Dirac equation
  - $\bullet\,$  Initial state computed with RR + balance principle + B-splines

F. Fillion-Gourdeau et al, Phys. Rev. A 85 (2), 022506

• Extended to time-dependent case

F. Fillion-Gourdeau et al, submitted to J. Comp. Phys.

- Schwinger pair production in a realistic scenario
- In the future...
  - Numerical work (dispersion error, absorbing boundary conditions, higher order for time discretization)
  - Complex scaling method

# Dirac equation in Cylindrical coordinates

