HEINRICH HEINE
universität düsseldorf

Strong-field pair production:
 An introduction with applications to two-color laser fields

Carsten Müller

Institut für Theoretische Physik I
Heinrich-Heine-Universität Düsseldorf

Outline

- Introduction:

From quantum mechanics to QED From "ordinary" QED to strong-field QED

- $\mathrm{e}^{+} \mathrm{e}^{-}$pair creation in strong laser fields:

The three "standard" mechanisms
Theoretical description and experimental observations Recent developments: More complex field configurations

- $\mathrm{e}^{+} \mathrm{e}^{-}$pair creation in two-color laser fields:

Further variants and getting back to where we started

Introduction part I:

From quantum mechanics to QED

The double-slit experiment with electrons

Double-slit apparatus showing the pattern of electron hits on the observing screen building up over time.
© Perimeter Institute

$$
W=\left|A_{1}+A_{2}\right|^{2}
$$

Wave-particle duality
2-pathway interference
"God runs electromagnetics on Monday, Wednesday, and Friday by the wave theory, and the devil runs it by quantum theory on Tuesday, Thursday, and Saturday."
(Sir Lawrence Bragg)
"God runs electromagnetics on Monday, Wednesday, and Friday by the wave theory, and the devil runs it by quantum theory on Tuesday, Thursday, and Saturday."
(Sir Lawrence Bragg)
"Der Gedanke, daß ein Elektron aus freiem Entschluß den Augenblick und die Richtung wählt, in der es fortspringen will, ist mir unerträglich. Wenn schon, dann möchte ich lieber Schuster oder gar Angestellter in einer Spielbank sein als Physiker."
(Albert Einstein)
"God does not play dice with the universe." (Albert Einstein)
"God runs electromagnetics on Monday, Wednesday, and Friday by the wave theory, and the devil runs it by quantum theory on Tuesday, Thursday, and Saturday."
(Sir Lawrence Bragg)
"Der Gedanke, daß ein Elektron aus freiem Entschluß den Augenblick und die Richtung wählt, in der es fortspringen will, ist mir unerträglich. Wenn schon, dann möchte ich lieber Schuster oder gar Angestellter in einer Spielbank sein als Physiker."
(Albert Einstein)
"God does not play dice with the universe." (Albert Einstein)
"Einstein, stop telling God what to do with his dice!" (Niels Bohr)
"God runs electromagnetics on Monday, Wednesday, and Friday by the wave theory, and the devil runs it by quantum theory on Tuesday, Thursday, and Saturday."
(Sir Lawrence Bragg)
"Der Gedanke, daß ein Elektron aus freiem Entschluß den Augenblick und die Richtung wählt, in der es fortspringen will, ist mir unerträglich. Wenn schon, dann möchte ich lieber Schuster oder gar Angestellter in einer Spielbank sein als Physiker."
(Albert Einstein)
"God does not play dice with the universe." (Albert Einstein)
"Einstein, stop telling God what to do with his dice!" (Niels Bohr)

We used to think that if we knew one, we knew two, because one and one are two.
We are finding that we must learn a great deal more about 'and'.
(Sir Arthur Eddington)

Development of quantum theory in the 1920s

Schrödinger equation (1926)
\rightarrow Hydrogen atom

$$
i \hbar \frac{\partial \Psi}{\partial t}=\frac{1}{2 m}\left(\hat{\vec{p}}-\frac{e}{c} \vec{A}\right)^{2} \Psi
$$

Quantized radiation field (1927):
\rightarrow absorption \& emission of photons

$$
\hat{\mathbf{A}}_{\gamma}(\mathbf{r}, t)=\sum_{\mathbf{k}, \rho} \sqrt{\frac{2 \pi c^{2}}{V \omega_{k}}} \mathbf{e}_{\mathbf{k}, \rho}\left(c_{\mathbf{k}, \rho}^{+} \mathrm{e}^{\mathrm{i}\left(\omega_{k} t-\mathbf{k} \cdot \mathbf{r}\right)}+\text { C.C. }\right)
$$

Relativistic generalization:
Dirac equation (1928) \rightarrow antimatter

$$
\left(\mathrm{i} c \gamma^{\mu} \partial_{\mu}-e \gamma^{\mu} A_{\mu}-m c^{2}\right) \Psi=0
$$

Development of QED in the 1940s

Tomonaga, Schwinger, Feynman, Dyson (1948/49):

- Second-quantize fermion field to describe creation/annihilation of e^{+}and e^{-}
- Introduce propagators (2-point correlation functions of field operators):

$$
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu}^{\prime}-\frac{e}{c} A_{\mu}\left(x^{\prime}\right)\right)-m c\right] \underbrace{\mathcal{G}\left(x^{\prime} ; x\right)}_{4 \times 4-\text { Matrix }}=\hbar \delta^{4}\left(x^{\prime}-x\right) \cdot \mathbb{1}
$$

Evolution of fermion state:

$$
\Psi_{i}^{(+)}\left(x^{\prime}\right)=\Phi_{i}\left(x^{\prime}\right)+\frac{e}{\hbar c} \int d^{4} x \mathcal{G}_{0}\left(x^{\prime}-x\right)(\gamma A(x)) \Psi_{i}^{(+)}(x)
$$

Photon-electron scattering:

Example: $\mathrm{e}^{+} \mathrm{e}^{-}$pair creation from photons

[Breit \& Wheeler (1934)]

$$
\left(k_{1}+k_{2}\right)^{2} \geq(2 m c)^{2}
$$

NOTE that single photon cannot create pairs

Transition amplitude in momentum space

$$
\begin{aligned}
S_{\mathrm{fi}}=-i\left(\frac{e}{\hbar c}\right)^{2} \frac{2 \pi \hbar c^{2}}{V \sqrt{\omega_{1} \omega_{2}}} \overline{u^{(+)}}\left(\vec{p}_{-}, s_{-}\right) & \left\{\left(\gamma \varepsilon_{2}\right) \mathcal{G}_{0}\left(p_{-}-\hbar k_{2}\right)\left(\gamma \varepsilon_{1}\right)\right. \\
& \left.+\left(\gamma \varepsilon_{1}\right) \mathcal{G}_{0}\left(p_{-}-\hbar k_{1}\right)\left(\gamma \varepsilon_{2}\right)\right\} u^{(-)}\left(-\vec{p}_{+},-s_{+}\right) \\
& \times(2 \pi \hbar)^{4} \delta^{(4)}\left(p_{-}+p_{+}-\hbar k_{1}-\hbar k_{2}\right)
\end{aligned}
$$

Introduction part II:

From QED to strong-field QED

Development of strong-field QED in the 1960s

Maiman (1960): "Stimulated optical radiation in ruby"

Franken et al. (1961): First observation of 2nd harmonic
 "...exploiting extraordinary ruby laser intensities of $10^{6} \mathrm{~W} / \mathrm{cm}^{2}$ "

Intriguing question for theory:
How to generalize newly established QED to electron-laser interactions?

Development of strong-field QED in the 1960s

Maiman (1960): "Stimulated optical radiation in ruby"

Franken et al. (1961): First observation of 2nd harmonic
 "...exploiting extraordinary ruby laser intensities of $10^{6} \mathrm{~W} / \mathrm{cm}^{2}$ "

Intriguing question for theory:
How to generalize newly established QED to electron-laser interactions?

In principle, one can calculate in ordinary QED processes with $\mathrm{N}>1$ photons, but becomes tedious very quickly...

Besides, perturbative expansion not always applicable!

Furry picture (1951)

$$
\left[\mathrm{i} c \gamma^{\mu} \partial_{\mu}-e \gamma^{\mu}\left(A_{\mu}+A_{\mu}^{(\mathrm{ext})}\right)-m c^{2}\right] \Psi=0
$$

Ordinary QED: Let free states interact with $A_{\mu}+A_{\mu}^{(\text {ext })}$

Furry picture (1951)

$$
\left[\mathrm{i} c \gamma^{\mu} \partial_{\mu}-e \gamma^{\mu}\left(A_{\mu}+A_{\mu}^{(\mathrm{ext})}\right)-m c^{2}\right] \Psi=0
$$

Ordinary QED: Let free states interact with $A_{\mu}+A_{\mu}^{(\text {ext })}$
Alternatively, IF you can solve

$$
\left(\mathrm{i} c \gamma^{\mu} \partial_{\mu}-e \gamma^{\mu} A_{\mu}^{(\mathrm{exx})}-m c^{2}\right) \Psi=0
$$

you may use these solutions as basis states which interact with A_{μ} only! \rightarrow Strong-field QED
(also applied in "bound-state QED" to calculate, e.g., Lamb shift in high-Z ions)

Strong-field QED in laser physics

Dirac equation: $\left(\mathrm{i} c \gamma^{\mu} \partial_{\mu}-e \gamma^{\mu} A_{\mu}^{(\mathrm{ext})}-m c^{2}\right) \Psi=0$
classical plane wave
relative coupling strength $\xi=e A^{(\mathrm{ext})} / m c^{2}$

Strong-field QED in laser physics

Dirac equation: $\left(\mathrm{i} c \gamma^{\mu} \partial_{\mu}-e \gamma^{\mu} A_{\mu}^{(\text {ext })}-m c^{2}\right) \Psi=0$
classical plane wave
relative coupling strength $\xi=e A^{(\text {ext })} / m c^{2}$
Volkov solutions (1935):

$$
\begin{aligned}
& \Psi_{p, s}(x)=\left(1-\frac{e k_{k} A}{2 c(k p)}\right) u_{p, s} \underbrace{\mathrm{e}^{-\mathrm{i}(p x)}}_{\text {free solution }} \mathrm{e}^{\mathrm{i} f(x)} \\
& f(x)=\frac{e}{c(k p)} \int^{(k x)}\left[p \cdot A(\eta)+\frac{e}{2 c} A^{2}(\eta)\right] d \eta
\end{aligned}
$$

How to formulate your transition amplitude

Example: Strong-field Breit-Wheeler process (pair production by γ-photon + laser wave)

$$
S_{f i}=-\frac{i e}{\hbar} \int d^{4} x \bar{\Psi}_{p_{-}, s_{-}}\left(\gamma^{\mu} A_{\mu}\right) \Psi_{p_{+}, s_{+}}
$$

Produce pair in photon-multiphoton collision: $\left(k_{\gamma}+n k_{L}\right)^{2} \geq\left(2 m_{*} c\right)^{2}$

Why laser field not quantized?

Volkov states can also be formulated for a quantized laser field.
However, one can show that in the limit of

- large initial laser photon numbers and
- small depletion of the laser wave
quantum and classical descriptions coincide (\rightarrow external-field approx.)

Note that 800 nm laser pulse of 1 J energy contains $\sim 10^{20}$ photons

$\mathbf{e}^{+} \mathbf{e}^{-}$pair creation

in strong laser fields

Typical energy scales in laser physics

Photon energy
$\hbar \omega$

Electric work
$e E \Delta r$

Ponderomotive energy

$$
\mathrm{U}_{\mathrm{p}}=e^{2} E^{2} / 4 m \omega^{2}
$$

Efficient coupling of a laser field with a quantized system is possible when its level spacing $\Delta \varepsilon$ compares with one of these scales:

$$
\begin{array}{ll}
\Delta \varepsilon \sim \hbar \omega & \text { Resonant (multiphoton) transition } \\
\Delta \varepsilon \sim e E \Delta r & \text { Quasistatic tunneling process } \\
\Delta \varepsilon \sim \mathrm{U}_{\mathrm{p}} & \text { Fast electron-induced reaction }
\end{array}
$$

Typical energy scales in laser physics

Photon energy
$\hbar \omega$

Electric work
$e E \Delta r$

Ponderomotive energy

$$
\mathrm{U}_{\mathrm{p}}=e^{2} E^{2} / 4 m \omega^{2}
$$

Efficient coupling of a laser field with a quantized system is possible when its level spacing $\Delta \varepsilon$ compares with one of these scales:

$$
\begin{array}{ll}
\Delta \varepsilon \sim \hbar \omega & \text { Resonant (multiphoton) transition } \\
\Delta \varepsilon \sim e E \Delta r & \text { Quasistatic tunneling process } \\
\Delta \varepsilon \sim \mathrm{U}_{\mathrm{p}} & \text { Fast electron-induced reaction }
\end{array}
$$

Pair creation experiments by powerful laser-solid interaction (Gahn/Chen/Sarri) where $\Delta \varepsilon \sim 1 \mathrm{MeV}$ have relied on U_{p} of secondary electrons

Direct laser-induced $\mathrm{e}^{+} \mathrm{e}^{-}$pair creation from vacuum?

$$
\begin{gathered}
\text { Pair creation requires } \\
\hbar \omega \approx m c^{2} \sim 1 \mathrm{MeV} \\
\text { or } \\
E \approx E_{\mathrm{cr}}=m c^{2} / e \lambda_{C} \approx 10^{16} \mathrm{~V} / \mathrm{cm}
\end{gathered}
$$

A single (plane) laser wave does not polarize the vacuum
since $E^{2}-B^{2}=\mathbf{E B}=0$
(J. Schwinger, 1951)

Direct laser-induced $\mathrm{e}^{+} \mathrm{e}^{-}$pair creation from vacuum?

$$
\begin{gathered}
\text { Pair creation requires } \\
\hbar \omega \approx m c^{2} \sim 1 \mathrm{MeV} \\
\text { or } \\
E \approx E_{\mathrm{cr}}=m c^{2} / e \lambda_{C} \approx 10^{16} \mathrm{~V} / \mathrm{cm}
\end{gathered}
$$

A single (plane) laser wave does not polarize the vacuum

$$
\text { since } E^{2}-B^{2}=\mathbf{E B}=0
$$

(J. Schwinger, 1951)

Early theoretical investigations:

The three "standard" mechanisms

Pair creation by high-energy photon + laser field:
Reiss, J. Math. Phys. 3, 59 (1962)
Nikishov \& Ritus, Zh. Eksp. Teor. Fiz. 46, 776 (1964)

Pair creation in combined laser and nuclear Coulomb field:
Yakovlev, Zh. Eksp. Teor. Fiz. 49, 318 (1965)
Mittleman, Phys. Rev. A 35, 4624 (1987)

Pair creation in a standing laser wave:
Brezin \& Itzykson, Phys. Rev. D 2, 1191 (1970)
Popov, Pis’ma Zh. Eksp. Teor. Fiz. 13, 261 (1971)

Tunneling and multiphoton pair creation

inverse Keldysh parameter for pair creation:

Tunneling rate: $\boldsymbol{R} \sim \exp \left(-\boldsymbol{E}_{\mathrm{cr}} / \boldsymbol{E}\right)$

Nonperturbative tunneling regime
n-photon rate: $\boldsymbol{R} \sim \boldsymbol{\xi}^{2 n} \sim \boldsymbol{I}^{n}$

Perturbative multiphoton regime

Example of pair creation amplitude

$$
S_{f i}=-\frac{i e}{\hbar} \int d^{4} x \bar{\Psi}_{p_{-}, s_{-}}\left(\gamma^{\mu} A_{\mu}\right) \Psi_{p_{+}, s_{+}}
$$

In the weak-field limit, equivalent to perturbative expansion in $\boldsymbol{\xi}=\boldsymbol{e} \boldsymbol{A} / \boldsymbol{m} \boldsymbol{c}^{2} \ll 1$

Example of pair creation amplitude

$$
S_{f i}=-\frac{i e}{\hbar} \int d^{4} x \bar{\Psi}_{p_{-}, s_{-}}\left(\gamma^{\mu} A_{\mu}\right) \Psi_{p_{+}, s_{+}}
$$

Plug in Volkov states and
Fourier-expand oscillating terms:

$$
S_{f i} \sim \sum_{n} \mathcal{M}_{n}\left(p_{+}, p_{-}\right) \int d^{4} x \mathrm{e}^{i\left(q_{+}+q_{-}-k_{\gamma}-n k\right) \cdot x}
$$

summation index counts number of laser photons!

$$
\delta\left(q_{+}^{\mu}+q_{-}^{\mu}-k_{\gamma}^{\mu}-n k^{\mu}\right)
$$

Fourier coefficients $=$ Bessel functions

$$
\mathrm{e}^{\mathrm{i} f(x)}=\sum_{n} J_{n}(\alpha) \mathrm{e} \varliminf_{\text {number of photons! }}^{\mathrm{i} n(k x)}
$$

tunneling process

$$
\text { rate } \sim \exp \left(-E_{\mathrm{cr}} / E_{L}\right)
$$

multiphoton process

$$
\text { rate } \sim I^{n}
$$

Can it be measured?

HERCULES Petawatt laser: $10^{22} \mathrm{~W} / \mathrm{cm}^{2}$ at 800 nm $\mathrm{E} \sim \mathbf{1 0}^{-4} \mathrm{E}_{\mathrm{cr}}$

Tunneling regime:

$$
R \sim \exp \left(-\mathrm{E}_{\mathrm{cr}} / \mathrm{E}\right) \sim 10^{-5000}
$$

Free Electron Laser FLASH: 100 eV at $10^{17} \mathrm{~W} / \mathrm{cm}^{2}$ $\hbar \omega \sim 10^{-4} m c^{2}$

Multiphoton regime:

$$
R \sim \xi^{4 \mathrm{mc} / \hbar \omega} \sim 10^{-100000}
$$

Available laser field strengths and frequencies by 4 orders too small...

Can it be measured?

HERCULES Petawatt laser: $10^{22} \mathrm{~W} / \mathrm{cm}^{2}$ at 800 nm

$$
\mathrm{E} \sim 10^{-4} \mathrm{E}_{\mathrm{cr}}
$$

Free Electron Laser FLASH: 100 eV at $10^{17} \mathrm{~W} / \mathrm{cm}^{2}$ $\hbar \omega \sim \mathbf{1 0}^{-4} \mathrm{mc}^{2}$
"The cross section for this process at optical frequencies or below is so small at any laser intensity as to make it completely negligible. It may be the smallest (nonzero) cross section on record."
(M. Mittleman, 1987)

Relativistic particle beam colliding with laser pulse

Exploit relativistic Doppler shift
lab frame: $\hbar \omega \approx 100 \mathrm{eV}, E \approx 10^{12} \mathrm{~V} / \mathrm{cm}$ rest frame: $\hbar \omega^{\prime}$ and E^{\prime} enhanced by 2γ

Relativistic particle beam colliding with laser pulse

Exploit relativistic Doppler shift
lab frame: $\hbar \omega \approx 100 \mathrm{eV}, E \approx 10^{12} \mathrm{~V} / \mathrm{cm}$ rest frame: $\hbar \omega^{\prime}$ and E^{\prime} enhanced by 2γ

SLAC experiment:
46 GeV electron + optical laser pulse
(D. Burke et al., PRL 1997)

Pairs were produced in two-step process through an intermediate high-energy Compton photon:
$\Omega_{\mathrm{C}}+\mathbf{n} \omega \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$
(strong-field Breit-Wheeler process)

Relativistic particle beam colliding with laser pulse

Exploit relativistic Doppler shift
lab frame: $\hbar \omega \approx 100 \mathrm{eV}, E \approx 10^{12} \mathrm{~V} / \mathrm{cm}$ rest frame: $\hbar \omega^{\prime}$ and E^{\prime} enhanced by 2γ

SLAC experiment:
46 GeV electron + optical laser pulse
(D. Burke et al., PRL 1997)

Pairs were produced in two-step process through an intermediate high-energy Compton photon:
$\Omega_{\mathrm{C}}+\mathbf{n} \omega \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$
(strong-field Breit-Wheeler process)

Transition from perturbative to nonperturbative regime

perturbative domain
nonperturbative domain

Transition from perturbative to nonperturbative regime

Hu, Müller \& Keitel,
PRL 105, 080401 (2010)

nonperturbative domain
perturbative domain

Combine laser-accelerated electron beam with second counter-propagating laser pulse: All-optical realization of SLAC experiment to probe the tunneling regime

Recent developments in

laser-induced $\mathrm{e}^{+} \mathrm{e}^{-}$pair creation

Pair creation in finite laser pulses

$$
\vec{A}(k \cdot x)=A_{0} \vec{\varepsilon} f(k \cdot x) \cos (k \cdot x)
$$

Boca \& Florescu, PRA (2009)
Mackenroth, Di Piazza \& Keitel, PRL (2010)
Heinzl, Seipt \& Kämpfer, PRA (2010)
Heinzl, Ilderton \& Marklund, PLB (2010)
Ipp, Evers, Keitel \& Hatsagortsyan, PLB (2011)
Titov, Takabe, Kämpfer \& Hosaka, PRL (2012)
Krajewska \& Kaminski, PRAs (2012) + (2013)
Jiang, Lv, Liu, Grobe \& Su, PRA (2014)
Meuren, Hatsagortsyan, Keitel \& Di Piazza, PRD (2015)

Enhancement of pair creation

Dynamical assistance:

 add high-frequency component

Schützhold, Gies \& Dunne, PRL (2008)
Di Piazza, Lötstedt, Milstein \& Keitel, PRL (2009) Orthaber, Hebenstreit \& Alkofer, PLB (2011) Jiang, Su, Lv, Lu, Li, Grobe \& Su, PRA (2012)

Multiple-beam or multiple-center setups

Bulanov, Mur, Narozhny, Nees \& Popov, PRL (2010) Fillion-Gourdeau, Lorin \& Bandrauk, PRL (2013)

QED cascades

Bell \& Kirk, PRL (2008)
Nerush, Kostyukov, Fedotov, Narozhny, Elkina \& Ruhl, PRL (2011)

Pair creation in neutrino-laser collisions

$$
\begin{aligned}
\hat{S}= & -\frac{l}{\hbar^{8}} \frac{4 \pi \alpha}{2^{2} \cos ^{2} \theta_{\mathrm{W}} \sin ^{2} \theta_{\mathrm{W}}} \\
& \times \int d^{4} x \bar{\psi}_{e}(x) \gamma^{\mu}\left(-\frac{1}{2}+2 \sin ^{2} \theta_{\mathrm{W}}+\frac{1}{2} \gamma^{5}\right) \psi_{e}(x) Z_{\mu}(x) \\
& \times \int d^{4} y \bar{\psi}_{\nu}(y) \gamma^{\sigma}\left(\frac{1}{2}-\frac{1}{2} \gamma^{5}\right) \psi_{\nu}(y) Z_{\sigma}(y)
\end{aligned}
$$

$\mathrm{e}^{+} \mathrm{e}^{-}$pair creation

in two-color laser fields

Dynamically assisted Breit-Wheeler pair creation

$$
\mathcal{R}=\frac{3^{2} \alpha m^{2}}{2^{7} \sqrt{2 \pi} \omega_{\gamma}}\left(\frac{E^{\prime}}{E_{\text {cr }}}\right)^{3 / 2} \exp \left(-\frac{8}{3} \frac{E_{\text {cr }}}{E^{\prime}}\right)
$$

(Reiss 1962)

Dynamically assisted Breit-Wheeler pair creation

$$
\mathcal{R}=\frac{3^{2} \alpha m^{2}}{2^{7} \sqrt{2 \pi} \omega_{\gamma}}\left(\frac{E^{\prime}}{E_{\mathrm{cr}}}\right)^{3 / 2} \exp \left(-\frac{8}{3} \frac{E_{\mathrm{cr}}}{E^{\prime}}\right)
$$

(Reiss 1962)

$$
\begin{aligned}
& \omega_{\gamma}=0.95 \mathrm{~m} \\
& \omega_{1}=0.1 \mathrm{~m} \\
& \omega_{2}=\omega_{\gamma}, \xi_{2}=0.002
\end{aligned}
$$

unassisted and assisted channels compete

Dynamically assisted Breit-Wheeler pair creation

Depencence on energy gap

$$
\left(k_{2}+k_{\gamma}\right)^{2}=4 m^{2}(1-\Delta)
$$

Dynamically assisted Breit-Wheeler pair creation

Depencence on energy gap

$$
\left(k_{2}+k_{\gamma}\right)^{2}=4 m^{2}(1-\Delta)
$$

Assistance by two high-frequency photons dominates

$$
\begin{aligned}
& \omega_{\gamma}=0.95 \mathrm{~m} \\
& \omega_{1}=0.05 \mathrm{~m} \\
& \omega_{2}=\omega_{\gamma} / 2, \xi_{2}=0.045
\end{aligned}
$$

[see also Wu \& Xue, PRD 90, 013009 (2014); Narozhny \& Fofanov, JETP 90, 415 (2000)]

Dynamically assisted Bethe-Heitler pair creation

Angular \& energy distributions of e^{+}may differ even when total contributions similar in size

$$
\begin{gathered}
\omega_{1}=2.3 \mathrm{eV}, \xi_{1} \approx 1 \\
\omega_{2}=70 \mathrm{eV}, \quad \xi_{2} \approx 10^{-8} \\
\quad \gamma=7000
\end{gathered}
$$

(b) Lab \diamond rat \diamond rv Frame

(b) Lab \curvearrowright ratory Frame

Pair creation in oscillating E-field

$$
\mathrm{A}=\mathrm{A}_{0}[\sin (\omega \mathrm{t}-\mathrm{kz})+\sin (\omega \mathrm{t}+\mathrm{kz})]=2 \mathrm{~A}_{0} \sin (\omega \mathrm{t}) \cos (\mathrm{kz}) \approx 2 \mathrm{~A}_{0} \sin (\omega \mathrm{t})
$$

Pair creation in oscillating E-field

$$
\mathrm{A}=\mathrm{A}_{0}[\sin (\omega \mathrm{t}-\mathrm{kz})+\sin (\omega \mathrm{t}+\mathrm{kz})]=2 \mathrm{~A}_{0} \sin (\omega \mathrm{t}) \cos (\mathrm{kz}) \approx 2 \mathrm{~A}_{0} \sin (\omega \mathrm{t})
$$

Momentum conservation reduces the problem to a two-level system, which undergoes Rabi oscillations at certain frequencies.

Pair creation in bifrequent oscillating E-field

$\vec{A}(t) \sim\left[\xi_{1} \sin \left(\omega_{1} t\right)+\xi_{2} \sin \left(\omega_{2} t\right)\right] \vec{e}_{y}$

Number density of created pairs

Resonances: $n_{1} \omega_{1}+n_{2} \omega_{2}=2 \varepsilon(p)$

Pair creation in bifrequent oscillating E-field

Momentum spectra
$\vec{A}(t) \sim\left[\xi_{1} \sin \left(\omega_{1} t\right)+\xi_{2} \sin \left(\omega_{2} t\right)\right] \vec{e}_{y}$

Number density of created pairs

Resonances: $n_{1} \omega_{1}+n_{2} \omega_{2}=2 \varepsilon(p)$

Pair creation in bifrequent oscillating E-field

monochrom. [7] - resonance

$$
\begin{gathered}
\omega_{1}=0.35 m, \xi_{1}=1.0 \\
N=45
\end{gathered}
$$

Akal, Villalba-Chavez, Müller, PRD 90, 113004 (2014)
[see also Orthaber, Hebenstreit, Alkofer, PLB (2011)]

Quantum interferences in bichromatic fields

Suppose $\omega_{1}=2 \omega_{2}$ (commensurate)

Two-pathway interference:

Quantum interferences in bichromatic fields

Suppose $\omega_{1}=2 \omega_{2}$ (commensurate)

Two-pathway interference:

Maximize interference: $\xi_{1}{ }^{2} \sim \xi_{2}{ }^{4} \ll 1$

Quantum interferences in bichromatic fields

$\omega_{1}=550 \mathrm{keV}$ (in nuclear frame)

Suppose $\omega_{1}=2 \omega_{2}$ (commensurate)

Two-pathway interference:

$$
\left.\xrightarrow{\longrightarrow}\right|_{\left\lvert\, \begin{array}{c}
n_{1}^{\prime}, n_{2}^{\prime} \\
n_{1}, n_{2}
\end{array}\right.} \mathscr{P}_{\left(n_{1}, n_{2}, n_{1}^{\prime}, n_{2}^{\prime}\right)}^{n_{1} \omega_{1}+n_{2} \omega_{2}} \omega_{1}+n_{2}^{\prime} \omega_{2}
$$

Maximize interference: $\xi_{1}{ }^{2} \sim \xi_{2}{ }^{4} \ll 1$

Quantum interferences in bichromatic fields

Interference can affect total rate

Quantum interferences in bichromatic fields

Interference can affect total rate

Peak field strength relevant

$$
F^{2}(c t-z)=\sum_{i=1}^{2} \frac{c^{2}}{\mathbf{a}_{i}^{2} \omega_{i}^{2}} E_{i}^{2}=\sum_{i=1}^{2} \sin ^{2}\left(\eta_{i}+\varphi_{i}\right)
$$

Summary

- Theory of QED in strong laser fields relies on Furry picture and Volkov states
- Three standard types of laser-induced pair creation: with γ-photon, Coulomb field or second laser beam; various interaction regimes - tunable by laser parameters
- Recent developments: pair creation in more complex field configurations (e.g. two-colors or finite pulses)
\rightarrow enriched creation dynamics, more realistic description and enhanced pair yields

Thank you for your attention!

