Electron-positron photoproduction in strong laser fields: total probability, semiclassical description and recollision processes

Extremely High-Intensity Laser Physics (ExHILP)

21.7.2015

Sebastian Meuren

Karen Z. Hatsagortsvan,

Christoph H. Keitel, Antonino Di Piazza

MPI for Nuclear Physics, Heidelberg

Sebastian Meuren (MPI-K Heidelberg)

2 / 1

Electron-positron production/recollision

Importance of real pair creation

Critical field

- $E \ge E_{cr}$: real pair creation
- Missing energy: $\sim mc^2$
- Life time: $au \sim \hbar/(mc^2)$
- Work by the field: $\sim E |e| c\tau$

Quantum nonlinearity parameter

Real pair creation is sizable if

$$egin{aligned} \chi &= rac{|e|\,\hbar}{m^3 c^4}\,\sqrt{q^\mu f_{\mu
u}^2 q^
u} \ &= (2\hbar\omega_\gamma/mc^2)(E/E_{cr})\gtrsim 1 \end{aligned}$$

[last relation holds for head-on collisions]

• $E_{\rm cr} = m^2 c^3 / (\hbar |e|) = 1.3 \times 10^{16} \text{ V/cm}$ implies $I_{\rm cr} = 4.6 \times 10^{29} \, {\rm W/cm^2}$

• $E_{\rm cr}$ not achievable even with next-generation laser systems:

Future facilities	$\hbar\omega$	I (intensity)
ELI, CLF, XCELS	$1\mathrm{eV}$	$10^{24-25} \mathrm{W/cm^2}$
XFEL, LCLS (goal)	$10\mathrm{keV}$	$10^{27} { m W/cm^2}$

- The electric field is not a Lorentz scalar
- A highly-energetic charged particle/photon leads to a Lorentz boost
- The critical field is obtainable in the boosted frame

Classification of the laser field strength

Perturbative regime	Each coupling suppressed by ξ^2 (probability)	
$\xi \ll 1$	<i>n</i> -photon absorption scales as ξ^{2n}	
Nonperturbative regime $\xi\gtrsim 1$	Laser must be included exactly	
Semiclassical regime $\varepsilon \gg 1$	Probability amplitude is highly oscillating, classical interpretation of stationary points	

• The regime $\xi \gtrsim 1$ is also called relativistic regime (electron at rest becomes relativistic within one laser half-cycle) Semiclassical picture: SM, C. H. Keitel, and A. Di Piazza, arXiv:1503.03271 (2015)

Nonlinear Breit-Wheeler process

Total/Differential probability

Optical theorem

SM, K. Z. Hatsagortsyan, C. H. Keitel, and A. Di Piazza, PRD 91, 013009 (2015)

Total pair-creation probability: Numerical results

By combining available optical petawatt lasers with existing GeV gamma sources, the pair-production probability can become very large

Problem: For certain values of χ/ξ the evaluation of the leading-order Feynman diagram violates unitarity **Solution**: The back-reaction of the decay on the photon wave function must be taken into account

SM, K. Z. Hatsagortsyan, C. H. Keitel, and A. Di Piazza, PRD 91, 013009 (2015)

Exact photon wave function

• The exact photon wave function $[\Phi_q^{in\mu}(x) \text{ and } \Phi_q^{*out\mu}(x)]$ is defined via the Schwinger-Dyson equation:

$$-\partial^2 \Phi_q^{\mathrm{in}\mu}(x) = \int d^4 y P^{\mu\nu}(x,y) \Phi_{q\nu}^{\mathrm{in}}(y)$$

$$= \cdots + \cdots = \cdots + \cdots = \cdots$$

a) Exact photon wave function (includes radiative corrections)

b) Polarization operator (all one-particle irreducible diagrams)

- For $\xi \gg 1$ we can replace $\Phi_{q\nu}^{in/out}(y)$ by $\Phi_{q\nu}^{in/out}(x)$ (local approximation)
- The obtained ordinary differential equation can be solved:

$$\Phi_{q,j}^{\mathrm{in}\mu}(x) = \epsilon_j^{\mu} \exp\left[-\mathrm{i}qx - \mathrm{i}\frac{1}{2kq}\int_{-\infty}^{kx} d\phi'\,\mathfrak{p}_j(\phi')\right]$$

 ϵ_j^{μ} : polarization four-vector, $\mathfrak{p}_j(\phi)$: coefficients related to the PO Real part of the phase: vacuum birefringence/photon mass Imaginary part of the phase: exponential wave-function decay Sebastian Meuren (MPI-K Heidelberg) 7/11 Electron-positron production/recollision

Recollisions of laser-generated electron-positron pairs

- The polarization operator mainly describes vacuum fluctuations (annihilation of the pair within one formation length)
- If real pair creation is sizable (i.e. for $\chi \gtrsim 1$) also recollision processes contribute to the polarization operator (for a linearly polarized laser)
- Recollisions can be explained semi-classically as a three-step process:
 - **1** Pair creation inside a constant-crossed field $(\xi \gg 1)$
 - Acceleration of the pair by the laser field
 - Ollision after one or more cycles

SM, K. Z. Hatsagortsyan, C. H. Keitel, and A. Di Piazza, PRL 114, 143201 (2015)

Recollisions of laser-generated electron-positron pairs

Polarization operator SM, C. H. Keitel, and A. Di Piazza, PRD **88**, 013007 (2013)

Breit-Wheeler pair creation / Exact photon states

SM, K. Z. Hatsagortsyan, C. H. Keitel, and A. Di Piazza, PRD **91**, 013009 (2015)

SM, C. H. Keitel, and A. Di Piazza arXiv:1503.03271 (2015)

Recollision processes

SM, K. Z. Hatsagortsyan, C. H. Keitel, and A. Di Piazza, PRL **114**, 143201 (2015)

Sebastian Meuren (MPI-K Heidelberg)

Thank you for your attention and your questions!