



# **CILEX-APOLLON : status and projects**

## Philippe Martin

## Lasers, Interactions, Dynamics Laboratory CEA-DSM-SACLAY





F. Amiranoff, project Director (CNRS-LULI) Philippe Martin, Scientific Director (CEA-LIDyL) Patrick Audebert, Technical Director (LULI) P. Monot, Deputy Director(IRAMIS/LIDyL) F. Mathieu : project manager (LULI)

**CENTER dedicated to ultra-relativistic optics Open to national and international Community** 





## Where is it ?







## Location of Cilex equipments







APOLLON

North

Apollon 10 P

Laser

Short focal area

(ions, X)

Ρ

#### Orme des merisiers site

3 fully radio-protected large scale halls :

- Laser Hall
- Long Focal Hall moderate intensities
- Short Focal Hall extreme intensities

F1: Main short pulse beam : 10 PW

(150 J, 15 fs – 10 ps, 400 mm diameter)

F2 : Secondary short pulse beam: 1 PW

(15 J, 15 – 200 fs, 140 mm diameter)

**F3**: Long pulse beam: 300 J max, 1 ns, 140 mm diameter.

**F4** : Probe pulse beam: 250 mJ < 20 fs, 100 mm diameter.

# 1700 m<sup>2</sup>

Long focal area (electrons, X)

CileX

#### LASER area transformations...







Operational 100 TW class systems Three Satellite facilities

UHI100, 100 TW, 25 fs Salle Jaune, 2 x 60 TW, 30 fs LASERIX 10J, variable durations



## Relativistic Regime

11 participating labs, 100 scientists and engineers

## Current Scientific Pr

Cilex Apollon

(motre) Ku

#### **Electron Acceleration from gases**

Single-stage laser plasma acceleration Multi-stages laser plasma acceleration Positron production and acceleration Inverse Compton effect Coupling to an undulator

Cile

#### Electron and Ion acceleration

**Relativistic plasmonics** Relativistic laboratory astrophysics Warm and Dense Matter basic studies Stopping power in matter and plasma Proton Radiography Time-dependent irradiations in chemistry Neutron sources

#### X-ray sources for physics from surf

Harmonics generation Attophysics Flying mirrors Xray lasers Betatron radiation

#### **High-Field Physics**

High energy photon emission and its back-reaction in laser-p Non-linear Compton / Thomson Scattering from laser-created Pair production in the presence of strong Coulomb fields Electron acceleration from vacuum : a possibility to measure the

# 2013 General Scientific Document Validation Scientific Advisory Committee 2013 2013 Scientific General Documen



# **Underdense plasmas**

Electron Accélération Inverse Compton

## LOA, LLR, LPGP, LIDyL, DPTA





#### **Electron acceleration**

**Fundamental studies in the extremely non-linear regime :** electron acceleration, NL compton emission, betatron emission





<u>Development a two-stage laser-plasma accelerator</u> as a prototype for future studies on multi-stage laser plasma acceleration







## **UHI100 - Saclay**



<u>**P**</u> = 100 TW</u> - E=2.5 J - τ=25 fs − 10 Hz Final beam aperture ≈80 mm,  $w_0 \approx 4 \mu m$  $I\lambda^2 \approx 5.10^{19}$  Wcm<sup>-2</sup>μm<sup>2</sup>





#### Electron acceleration : Experiments on UHI100







#### S. Dobosz et al.



#### 



#### Conceived for 50-80MeV avec $\Delta E/E^{\pm 5\%}$





-Calculs: Antoine Chancé (CEA-IRFU)
-CAO/DAO : Olivier Delferrière / M. Bougeard
-Caractérisation du champ magnétique sur banc de mesure LLR (Arnd Specka)



# First encouraging results on UHI100













Doppler upshift : high energy photons with modest electrons energy :  $\omega_x = 4\gamma^2 \omega_0$ 

#### 20 MeV electrons can produce 10 keV photons 200 MeV electrons can produce 1 MeV photons

Bottlenecks :

- superposition of e-laser beams (fs/µm precision)

## Inverse Compton Scattering : New scheme





Cile

A single laser pulse

A plasma mirror reflects the laser beam

The back reflected laser collides with the accelerated electrons

No alignment : the laser and the electron beams naturally overlap

Save the laser energy !

## Inverse Compton Scattering : New scheme

loa



K. Ta Phuoc et al, Nature Photonics 6, 308–311 (2012)



# **Overdense plasmas**

High Order Harmonics generation Attophysics Ion acceleration Electron acceleration

## LIDyL, LOA, DPTA



20

#### HHG on plasma mirrors in the Relativistic Regime





#### Particle-In-Cell simulations I=3. 10<sup>19</sup> W/cm<sup>2</sup>







Ordre harmonique

Thaury et al, Nature Physics 3, 424 (2007)

#### How to generate isolated attosecond pulses?



# Big deal : Generating isolated attosecond pul Spatio-temporal control: the attosecond lighthouse effect Laser pulse with WAVEFRONT ROTATION Collection of isolated attosecond pulse beamlets Train of ANGULARLY DISPERSED attosecond pulses Plasma mirror

#### H. Vincenti and F. Quéré, PRL 108 (2012)

#### Applications of ultrafast wavefront rotation



#### F.Quéré et al, J. Phys. B 47 (2014) 124004

#### Research framework on electron and ion acceleration



## **ION** ACCELERATION FROM GRATINGS





#### **Relativistic plasmonics**





First experimental evidence of SPW excitation in the relativistic regime

T. Ceccotti et al., Phys. Rev. Lett. 111, 185001, (2013)

#### Campaign to investigate electron emission





P.I. : A. Macchi - INO





Varying the laser incidence angle  $\phi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch





#### $\phi_i$ = 15°

m=0 at 75°
m=-1 at 42°
(φ angular scale is shifted in figure because of lanex misalignment)



Varying the laser incidence angle  $\phi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch





#### φ<sub>i</sub>= 20°

m=0 at 70° m=-1 at 35° (angular scale is shifted in figure because of lanex misalignment)



Varying the laser incidence angle  $\phi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch





Varying the laser incidence angle  $\phi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch





Varying the laser incidence angle  $\varphi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch





Varying the laser incidence angle  $\varphi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch





Varying the laser incidence angle  $\phi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch





Varying the laser incidence angle  $\varphi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch





Varying the laser incidence angle  $\phi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch





Varying the laser incidence angle  $\varphi_i$ :

- shift of the diffraction orders (position within  $\pm$  5  $^{\circ}$  error)
- reduction of electron signal at tangent; larger spread of the electron bunch



#### Electron spectra





# Ultimate goals on APOLLONUltra-Relativistic Optics with plasma Mirrors



Light manipulation with Plasma Ultra-High HHG XUV intensities Route to atto-physics, electron acceleration ion acceleration...

#### X-ray lasers and applications



X-ray laser future trends : shorter wavelengths, brighter beams, shorter durations!



# **Ultra-High-Fields**

#### Light pushing matter accelerating all particles at once !



#### Transition toward a radiation-pressure dominant regime



**High Energy Photon emission and QED processes must be taken into account** Thomson / Compton non linéaire, Bremmstrahlung, pair production, photon recoil,...



Implementation of these mechanisms in the PIC codes

# **High-Field-Physics**

Design and Interpretations of future experiments with APOLLON and above

Fundamental importance to account for physical effects occurring above 10<sup>22</sup> W/cm<sup>2</sup> as Radiation Reaction forces

#### Needs for theory and intensive PIC-Monte Carlo simulations



CileX

M. Lobet, C. Ruyer, A. Debayle, M. Grech, E. d'Humières, M. Lemoine, L. Gremillet

SMILEY PIC code, coll A. Di-Piazza, H. Vincenti,...





#### PIC simulations in the APOLLON parameters range (L. Gremillet-CALDER)









# Back to CILEX experimental areas

# Where are we at the minute ?



Long Focal area for electron acceleration and X ray sources

## Efficient acceleration requires long focus (33 m)





Cile)



## Short Focal area for UHI physics

Ultra-High-Intensities requires tight focusing then short focus (1.5 m)







# Apollon in l'Orme = 2015 First shots = 2016 First experiments = juanuary 2018















#### Les miroirs plasma comme injecteur d'électrons relativistes



**<u>Collaboration LOA (J. Faure et coll.)</u>** 

Thenevet el al, submitted