Modelling trident pair production in laser-matter interactions

Felix Mackenroth

ExHILP Heidelberg, July 23rd 2015

Introduction •୦୦୦ Motivation

Motivation

Second order processes

Trident pair production

Summary 0000000

Laser-matter interactions

laser-matter quantum interactions

Introduction
0000
Motivation

Motivation

Second order processes

Trident pair production

Summary 0000000

Laser-matter interactions

from Gonoskov et al. arXiv:1412.6426v1 (2014) - accepted in PRE

- laser-matter quantum interactions
- modelled by PIC schemes

Introduction
0000
Motivation

Motivation

Second order processes

Trident pair production

Summary 0000000

Laser-matter interactions

from Gonoskov et al. arXiv:1412.6426v1 (2014) - accepted in PRE

- laser-matter quantum interactions
- modelled by PIC schemes
- Quantum rates needed

Introduction 0000 Motivation

Outline

Second order processes

Trident pair production

Summary

Introduction

Trident pair production

Introduction 0000 Motivation Second order processes

Trident pair production

Sum mary 0000000

Nonlinear QED in strong laser fields

Condition for strong laser fields

$$\xi = \frac{eE}{m_e\omega_0}\gtrsim 1 \ , \ I\gtrsim 10^{18} \left[\frac{\omega}{\rm eV}\right]^2 \frac{\rm W}{\rm cm^2}$$

Quantum effects

$$\chi = rac{(k_0 p)}{m \omega_0} rac{E}{E_{
m cr}} \gtrsim 1$$

Introduction 0000 Motivation Second order processes

Trident pair production

Summary 0000000

Nonlinear QED in strong laser fields

Condition for strong laser fields

$$\xi = \frac{eE}{m_e\omega_0} \gtrsim 1 \ , \ I \gtrsim 10^{18} \left[\frac{\omega}{\text{eV}}\right]^2 \frac{\text{W}}{\text{cm}^2}$$

Quantum effects

$$\chi = rac{(k_0 p)}{m \omega_0} rac{E}{E_{
m cr}} \gtrsim 1$$

Volkov solution

4 / 14

Introd	uction
0000	н. — — — — — — — — — — — — — — — — — — —
Motiv	ation

Second order processes

Trident pair production

Summary 0000000

Quantum processes - laser dressed

Introduction 000 Motivation Second order processes

Trident pair production

Summary 0000000

Quantum processes - laser dressed

- first order processes (in PIC)
- second order processes

Introduction	Second order processes
0000	0000
Motivation	

Trident pair production

Summary

Quantum processes - laser dressed

- first order processes (in PIC)
- second order processes approximated by cascades

Introduction 0000 Introduction Second order processes

Trident pair production

Summary 0000000

Nonlinear double Compton scattering

Double photon emission suppressed

from D. Seipt and B. Kämpfer, PRD 85, 101701 (2012)

Angle separated signal dominated by cascade

see F. M. and A. Di Piazza, PRL 110, 070402 (2013)

Introduction 0000 Introduction Second order processes

Trident pair production

Summary 0000000

Trident pair production

Photon emission with subsequent **pair production** E-144 @ SLAC

D.L. Burke, et al., PRL **79**, 1626 (1997) C. Bamber et al., PRD **60**, 092004 (1999)

Second order processes

Trident pair production

Sum mary 0000000

Trident pair production

Photon emission with subsequent pair production

H. Hu et al., PRL 105, 080401 (2010)

Scattering matrix element

$$S_{fi} = -e^2 \int d^4x d^4y \overline{\Psi}_{q_e}(y) \gamma_{\mu} \Psi_{-q_p}(y) \mathcal{D}^{\mu\nu}(y,x) \overline{\Psi}_{p_f}(x) \gamma_{\nu} \Psi_{p_i}(x)$$

Second order processes

Trident pair production

Summary 0000000

Trident pair production

Photon emission with subsequent pair production

H. Hu et al., PRL 105, 080401 (2010)

Scattering matrix element

$$\begin{split} S_{fi} &= -e^2 \int d^4 x d^4 y \overline{\Psi}_{q_e}(y) \gamma_{\mu} \Psi_{-q_p}(y) \mathcal{D}^{\mu\nu}(y,x) \overline{\Psi}_{p_f}(x) \gamma_{\nu} \Psi_{p_i}(x) \\ &= -e^2 \int dx^{\eta} dy^{\eta} M^y_{\mu}(y^{\eta}) \mathcal{D}^{\mu\nu}(y^{\eta},x^{\eta}) M^x_{\nu}(x^{\eta}) \\ &\times \delta^{(3)} (p_{i,\perp} - p_{f,\perp} - k_{\text{int},\perp}) \delta^{(3)} (q_{p,\perp} + q_{e,\perp} - k_{\text{int},\perp}) \end{split}$$

Second order processes

Trident pair production

Summary 0000000

8 / 14

Trident pair production

Photon emission with subsequent pair production

H. Hu et al., PRL 105, 080401 (2010)

Scattering matrix element

$$\begin{split} S_{fi} &= -e^2 \int d^4 x d^4 y \overline{\Psi}_{q_e}(y) \gamma_{\mu} \Psi_{-q_p}(y) \mathcal{D}^{\mu\nu}(y,x) \overline{\Psi}_{p_f}(x) \gamma_{\nu} \Psi_{p_i}(x) \\ &= -e^2 \int dx^{\eta} dy^{\eta} M^y_{\mu}(y^{\eta}) \mathcal{D}^{\mu\nu}(y^{\eta},x^{\eta}) M^x_{\nu}(x^{\eta}) \\ &\times \delta^{(3)}(p_{i,\perp} - p_{f,\perp} - k_{\text{int},\perp}) \delta^{(3)}(q_{p,\perp} + q_{e,\perp} - k_{\text{int},\perp}) \end{split}$$

Dressed photon propagator

Second order processes

Trident pair production

Summary 0000000

Partial channels

Photon propagator splits up (see A. Ilderton PRL 106, 020404 (2011))

$$\mathcal{D}^{\mu\nu}(y^{\eta},x^{\eta}) = g^{\mu\nu} \left(\mathcal{C}_d \delta(y^{\eta} - x^{\eta}) + \mathcal{C}_c \Theta(y^{\eta} - x^{\eta}) \right)$$

Scattering amplitude alike

Second order processes

Trident pair production

Summary 0000000

Partial channels

Photon propagator splits up (see A. Ilderton PRL 106, 020404 (2011))

$$\mathcal{D}^{\mu\nu}(y^{\eta},x^{\eta}) = g^{\mu\nu} \left(C_d \delta(y^{\eta} - x^{\eta}) + C_c \Theta(y^{\eta} - x^{\eta}) \right)$$

Scattering amplitude alike

Second order processes

Trident pair production

Summary 0000000

Partial channels

Photon propagator splits up (see A. Ilderton PRL 106, 020404 (2011))

$$\mathcal{D}^{\mu\nu}(y^{\eta},x^{\eta}) = g^{\mu\nu} \left(C_d \delta(y^{\eta} - x^{\eta}) + C_c \Theta(y^{\eta} - x^{\eta}) \right)$$

Scattering amplitude alike

Second order processes

Trident pair production

Summary 0000000

Partial channels - estimates

NTPC partial channels

$$\begin{split} M_{fi}^{(c)} &= \sum_{r,s=1}^{2} a_{r,s} \int d\eta_{x} d\eta_{y} \theta(\Delta \eta) \psi^{s}(\eta_{x}) \psi^{r}(\eta_{y}) \mathrm{e}^{-i(S_{C}(\eta_{x})+S_{\mathsf{BW}}(\eta_{y}))} \\ M_{fi}^{(d)} &= \sum_{r=1}^{2} b_{r} \int d\eta \psi^{r}(\eta) \mathrm{e}^{-i(S_{C}(\eta)+S_{\mathsf{BW}}(\eta))} \end{split}$$

Cascade channel

Direct channel

- 2 interaction points
- Compton ⊗
 Breit-Wheeler events
- 1 interaction point
- non-separable dynamical behaviour

Second order processes

Trident pair production

Summary 0000000

Partial channels - estimates

NTPC partial channels

$$M_{fi}^{(c)} = \sum_{r,s=1}^{2} a_{r,s} f_{r,s}$$
$$M_{fi}^{(d)} = \sum_{r=1}^{2} b_r f_r$$

Cascade channel

Direct channel

- 2 interaction points
- Compton ⊗
 Breit-Wheeler events
- ullet 1 interaction point
- non-separable dynamical behaviour

Second order processes

Trident pair production

Summary 0000000

Partial channels - estimates

Formation lengths $\delta_{C/BW} \sim \lambda_0 / \xi$ ($\xi = eE/m_e \omega_0$)

- 2 interaction points
- Compton ⊗
 Breit-Wheeler events
- 1 interaction point
- non-separable dynamical behaviour

Second order processes

Trident pair production

Summary 0000000

Partial channels - estimates

Formation lengths $\delta_{C/BW} \sim \lambda_0 / \xi$ ($\xi = eE/m_e \omega_0$)

- 2 interaction points
- Compton ⊗ Breit-Wheeler events
- $P^{(c)} \sim (\xi \omega_0 \tau)^2$

- 1 interaction point
- non-separable dynamical behaviour

• $P^{(d)} \sim (\xi \omega_0 \tau)$

Second order processes

Trident pair production

Summary 0000000

Partial channels - estimates

Formation lengths $\delta_{C/BW} \sim \lambda_0 / \xi \ (\xi = eE/m_e \omega_0)$

- 2 interaction points
- Compton ⊗
 Breit-Wheeler events
- $P^{(c)} \sim (\xi \omega_0 \tau)^2$

- 1 interaction point
- non-separable dynamical behaviour

• $P^{(d)} \sim (\xi \omega_0 \tau)$

Consider short $\tau \sim \omega_0^{-1}$, not too intense $\xi \gtrsim 1$ pulses!

Second order processes

Trident pair production

Summary 0000000

Pair production probability

Typical parameters:

$$\varepsilon = 10 \text{ GeV } e^- - I_0 = 2 \times 10^{21} \frac{\text{W}}{\text{cm}^2} (\xi \approx 20) - \chi \approx 2.5 \omega_0 = 1.55 \text{ eV}, \tau = 5 \text{ fs laser } (\omega_0 \tau \approx 10)$$

Second order processes

Trident pair production

Summary 0000000

Pair production probability

Typical parameters:

$$\varepsilon = 10 \text{ GeV } e^- - I_0 = 2 \times 10^{21} \frac{\text{W}}{\text{cm}^2} (\xi \approx 20) - \chi \approx 2.5$$

 $\omega_0 = 1.55 \text{ eV}, \tau = 5 \text{ fs laser } (\omega_0 \tau \approx 10)$

F.M. et al., to be published

Second order processes

Trident pair production

Summary 0000000

Pair production probability

Typical parameters: $\varepsilon = 10 \text{ GeV } e^- - l_0 = 2 \times 10^{21} \frac{\text{W}}{\text{cm}^2} (\xi \approx 20) - \chi \approx 2.5$ $\omega_0 = 1.55 \text{ eV}, \tau = 5 \text{ fs laser } (\omega_0 \tau \approx 10)$

F.M. et al., to be published

• Channels of comparable amplitude

Second order processes

Trident pair production

Summary

Pair production probability

Typical parameters: $\varepsilon = 10 \text{ GeV } e^- - I_0 = 2 \times 10^{21} \frac{\text{W}}{\text{cm}^2} (\xi \approx 20) - \chi \approx 2.5$ $\omega_0 = 1.55 \text{ eV}, \tau = 5 \text{ fs laser } (\omega_0 \tau \approx 10)$

F.M. et al., to be published

- Channels of comparable amplitude
- Interference term suppressed $P^{\rm tot} \approx P^{\rm (c)} + P^{\rm (d)}$

Second order processes

Trident pair production

Summary 0000000

Pair production probability

Typical parameters: $\varepsilon = 10 \text{ GeV } e^- - I_0 = 2 \times 10^{21} \frac{\text{W}}{\text{cm}^2} (\xi \approx 20) - \chi \approx 2.5$ $\omega_0 = 1.55 \text{ eV}, \tau = 5 \text{ fs laser } (\omega_0 \tau \approx 10)$

F.M. et al., to be published

- Channels of comparable amplitude
- Interference term suppressed $P^{tot} \approx P^{(c)} + P^{(d)}$
- Suppression of $\Delta \theta_p = 0$ in direct channel: Quantum interferences

Second order processes

Trident pair production

Summary 0000000

Disentangling NTPC channels

Asymmetry of relative yield

$$\mathcal{R} = rac{P^{(\mathsf{d})} - P^{(\mathsf{c})}}{P^{(\mathsf{d})} + P^{(\mathsf{c})}}$$

Second order processes

Trident pair production

Summary 0000000

Disentangling NTPC channels

Asymmetry of relative yield

F.M. et al., to be published

Second order processes

Trident pair production

Summary 0000000

Disentangling NTPC channels

Asymmetry of relative yield

F.M. et al., to be published

Disentangling of separate pair production channels

Felix Mackenroth

Modelling trident pair production in laser-matter interactions 12 / 14

Second order processes

Trident pair production

Summary 0000000

Angular distribution - Quasiclassical picture

Quantum interaction, classical particle motion

- <u>cascade</u>: (2 interaction points)
 - 1^{st} field maximum: photon emission ($k_{int} = {}^{p}i/2$)
 - 2^{nd} field maximum: pair creation ($p_p = \frac{k_i}{2}$)
- <u>direct</u>: (1 interaction point)
 - overall field maximum: pair creation
 - $\boldsymbol{p}_p = P_i/\tau$ (numerical)

Second order processes

Trident pair production

Summary 0000000

Angular distribution - Quasiclassical picture

Quantum interaction, classical particle motion

- <u>cascade</u>: (2 interaction points)
 - 1^{st} field maximum: photon emission ($k_{int} = {}^{p}i/2$)
 - 2^{nd} field maximum: pair creation ($p_p = \frac{ki}{2}$)
- <u>direct</u>: (1 interaction point)
 - overall field maximum: pair creation

F.M. et al., to be published

Introduction

Second order processes

Trident pair production

Summary

Summary

Take home

- quantification of trident pair production
- quasi-classical angular distribution
- coherent channel has to be taken into account

• quantum interferences in coherent channel

Introduction

Second order processes

Trident pair production

Summary

Summary

Take home

- quantification of trident pair production
- quasi-classical angular distribution

 p_i

• coherent channel can

be taken into account q_p

• quantum interferences in coherent channel

 \boldsymbol{x}

Thank you

 q_e

 p_f

Motivation

Second order processes

Trident pair production

Summary •000000

Laser-matter interactions

Electron inside a laser field

Motivation

Second order processes

Trident pair production

Summary •000000

Laser-matter interactions

Photon emission inside a laser field

photons emitted by electron inside laser field

Motivation

Second order processes

Trident pair production

Summary •000000

Laser-matter interactions

Pair production inside a laser field

- photons emitted by electron inside laser field
- e⁺-e⁻-pair created by high-energy photon inside laser field

Second order processes

Trident pair production

Summary •000000

Motivation

Laser-matter interactions

Matter production (SLAC experiment E-144)

- photons emitted by electron inside laser field
- e⁺-e⁻-pair created by high-energy photon inside laser field
- provide closed analysis of matter production

Second order processes

Trident pair production

Summary 0000000

Nonlinear QED in strong laser fields

Condition for strong laser fields

$$\xi = \frac{eE}{m_e\omega_0} \gtrsim 1 \ , \ I \gtrsim 10^{18} \left[\frac{\omega}{\text{eV}}\right]^2 \frac{\text{W}}{\text{cm}^2}$$

Quantum effects

$$\chi = rac{(k_0 p)}{m \omega_0} rac{E}{E_{
m cr}} \gtrsim 1$$

Second order processes

Trident pair production

Summary 0000000

Nonlinear QED in strong laser fields

Condition for strong laser fields

$$\xi = \frac{eE}{m_e\omega_0} \gtrsim 1 \ , \ I \gtrsim 10^{18} \left[\frac{\omega}{\text{eV}}\right]^2 \frac{\text{W}}{\text{cm}^2}$$

Quantum effects

$$\chi = rac{(k_0 p)}{m \omega_0} rac{E}{E_{
m cr}} \gtrsim 1$$

Light cone coordinate $a^\eta = (k_0 a)$, $a^\mu = (a^\eta, a^\perp)$

Second order processes

Trident pair production

Summary 0000000

Nonlinear QED in strong laser fields

Condition for strong laser fields

$$\xi = \frac{eE}{m_e\omega_0} \gtrsim 1 \ , \ I \gtrsim 10^{18} \left[\frac{\omega}{\rm eV}\right]^2 \frac{\rm W}{\rm cm^2}$$

Quantum effects

$$\chi = rac{(k_0 p)}{m \omega_0} rac{E}{E_{
m cr}} \gtrsim 1$$

Light cone coordinate $a^\eta = (k_0 a)$, $a^\mu = (a^\eta, a^\perp)$ Volkov solution

$$\Psi_{p}(x) = \mathbf{e}^{-iS_{\mathbf{v}}(x,p)} E_{p}(x^{\eta}) \frac{u_{p}}{\sqrt{2\varepsilon}}$$

photon propagator

$$\mathcal{D}^{\mu\nu}(y,x) = \lim_{\epsilon \to 0} \int \frac{d^4q}{(2\pi)^4} \frac{4\pi g^{\mu\nu}}{q^2 + i\epsilon} \mathbf{e}^{-iq(y-x)}$$

Second order processes

Trident pair production

Summary 0000000

Disentangling NTPC channels

Quite **robust** with changing CEP

F.M. et al., to be published

Second order processes

Trident pair production

Summary 0000000

Disentangling NTPC channels

Quite **robust** with changing CEP

F.M. et al., to be published

Disentangling of separate pair production channels

Second order processes

Trident pair production

Summary 0000000

Nonlinear QED in strong laser fields

Model laser pulse as plane wave (neglect focusing)

 $A(\mathbf{x},t) = A(k_0 x =: x^{\eta})$

Second order processes

Trident pair production

Summary 0000000

Nonlinear QED in strong laser fields

Model laser pulse as plane wave (neglect focusing)

Second order processes

Trident pair production

Summary

Nonlinear QED in strong laser fields

Model laser pulse as plane wave (neglect focusing)

Second order processes

Trident pair production

Summary

Nonlinear QED in strong laser fields

Model laser pulse as plane wave (neglect focusing)

Light cone coordinate $a^\eta = (k_0 a)$, $a^\mu = (a^\eta, a^\perp)$

Volkov solution

$$\Psi_{p}(x) = e^{-iS_{\boldsymbol{V}}(x,p)} E_{p}(x^{\eta}) \frac{u_{p}}{\sqrt{2\varepsilon}}$$

Classical action

$$p_{class}^{\mu}(x) = rac{\partial}{\partial x_{\mu}} S_V(x,p)$$

Second order processes

Trident pair production

Summary 0000000

Scattering matrix elements

Initial & final states

$$\begin{aligned} |i\rangle &= \prod_{k_i} a_{k_i}^{\dagger} \prod_{p_i} c_{p_i}^{\dagger} \prod_{q_i} d_{q_i}^{\dagger} |0\rangle \\ |f\rangle &= \prod_{k_f} a_{k_f}^{\dagger} \prod_{p_f} c_{p_f}^{\dagger} \prod_{q_f} d_{q_f}^{\dagger} |0\rangle \end{aligned}$$

Scattering matrix

Perturbative order: *n* vertices

Second order processes

Trident pair production

Summary 0000000

Scattering matrix elements

Initial & final states

$$\begin{aligned} |i\rangle &= \prod_{k_i} a_{k_i}^{\dagger} \prod_{p_i} c_{p_i}^{\dagger} \prod_{q_i} d_{q_i}^{\dagger} |0\rangle \\ |f\rangle &= \prod_{k_f} a_{k_f}^{\dagger} \prod_{p_f} c_{p_f}^{\dagger} \prod_{q_f} d_{q_f}^{\dagger} |0\rangle \end{aligned}$$

Scattering matrix

Perturbative order: n vertices - consider tree-level processes

$$S_{fi}^{n} = \int d^{4}x_{1} \cdots d^{4}x_{n} \overline{\Psi}_{p_{f}} \gamma_{\mu_{n}} \Psi_{-q_{f}} \cdots (\mathcal{G}(x_{i}, x_{i-1}), \mathcal{D}^{\mu_{i}\mu_{i-1}}(x_{i}, x_{i-1})) \overline{\Psi}_{q_{i}} \gamma_{\mu_{1}} \Psi_{p_{i}}$$

Second order processes

Trident pair production

Summary 00000●0

Disentangling NTPC channels

Direct channel suppression in forward direction Stationary phase in cascade channel: small stationary phase imaginary parts

$$\psi(\eta_0)pprox -rac{lpha_{\mathsf{C}/\mathsf{BW}}}{2eta_{\mathsf{C}/\mathsf{BW}}}$$

Direct channel:

$$\begin{split} \psi(\eta_{0}) &\approx -\frac{\alpha_{\rm C} + \alpha_{\rm BW}}{2 \left(\beta_{\rm C} + \beta_{\rm BW}\right)} + i\mathcal{C} \\ \mathcal{C} &\approx \frac{p_{i}^{-} p_{f}^{-} p_{p}^{-} p_{e}^{-} \left(p_{f}^{-} \boldsymbol{p}_{i}^{\perp} - p_{i}^{-} \boldsymbol{p}_{f}^{\perp} - p_{e}^{-} \boldsymbol{p}_{p}^{\perp} - p_{p}^{-} \boldsymbol{p}_{e}^{\perp}\right)^{2}}{\left(m\xi\right)^{2} \left(p_{i}^{-} p_{e}^{-} p_{p}^{-} - p_{f}^{-} p_{e}^{-} p_{p}^{-} + p_{i}^{-} p_{e}^{-} p_{f}^{-} p_{p}^{-}\right)^{2}} \\ \approx \frac{p_{p}^{\perp} = 0}{2} \frac{p_{i}^{-} p_{f}^{-} p_{p}^{-} p_{e}^{-} \left((p_{f}^{-} - p_{p}^{-}) \boldsymbol{p}_{i}^{\perp} - (p_{i}^{-} - p_{p}^{-}) \boldsymbol{p}_{f}^{\perp}\right)^{2}}{\left(m\xi\right)^{2} \left(p_{i}^{-} p_{e}^{-} p_{p}^{-} - p_{f}^{-} p_{e}^{-} p_{p}^{-} + p_{i}^{-} p_{e}^{-} p_{f}^{-} + p_{i}^{-} p_{f}^{-} p_{p}^{-}\right)^{2}} \\ \Rightarrow \boldsymbol{p}_{f}^{\perp} \equiv 0 \text{ favoured} \end{split}$$

Second order processes

Trident pair production

Summary

Experimental evidence

E-144 experiment @ SLAC: $\varepsilon = 46.6 \text{ GeV } e^- \& I = 10^{18} \frac{\text{W}}{\text{cm}^2}, \omega = 2.35 \text{ eV}, \tau = 40 \text{ fs laser}$ Laser approx. monochromatic, divergences regularised "by hand"

Hu et al., Phys. Rev. Lett. 105, 080401 (2010)