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 Laser capabilities
» Laser construction
» Target areas and detector capabillities
* Theory support

e Simulations
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L aser Infrastructure

Laser wavelength A=1.058 um
Full power: 150-170 ) / pulse
Repetition rate at full power: ~ 1 / hour
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Operation outline

1. Oscillator produces nJ, <100 fs pulses at ~70 MHz
repetition

2. 2 Short-pulse OPA stages deliver 500 yJ (pumped
by 20 mJ, 10 ps using YLF crystal at 2w)

3. Stretch to 2 ns, matching to 4ns 4J pump of next OPA
stages (BBO and LBO crystals) = 0.5J 2ns 2.5 Hz

4. 2- and 4-pass Nd:glass rod amplifiers — 10 J

d:glass rod Amplifiers

‘ Stretcl er5pCPp;

4J-4ns Oscillatc
OPCPA
pump laser
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amplified bandwidth, improves compression capability

* Adaptive mirror corrects thermal inhomogeneities in pump glass
6. Compressor

* Adaptive mirror before gratings corrects wavefront for final optics

7. Chamber 1:f/1 or f/3 parabola for High intensity/high
energy experiments

Chamber 2 : f/45 spherical mirror For wakefield



Upgrade Contrast and Intensity
Goal: >2x1022 W/cmz=

Focusing:
- 2" adaptive mirror in
compressor

* full aperture
» f/1 off-axis parabola

= Jave > 1022 W/Ccm?
for ~50 cycles

Generated WF Residual (nm RMS) Used Dynamic (%)
um PTV Absolute Relative Absolute Relative
- active flatness - 34 - 34% -
=> I (Alry) >1 X 1023 focus 6 33 8 35% 1%
ea k astig 5.8 34 3 34% 1%
p astigd5 5.95 33 9 33% 2%
comaX 5.83 40 20 31% 5%
coma¥Y 5.87 34 12 37% 4%
trefoil 5.94 35 10 36% 4%
trefoil30 5.94 34 14 37% 4%
. . AS 2.97 47 25 38% 9%
Baseline experlment' e = - = v -
" astig2_45 3.9 37 19 34% 7%
tetrafoil 39 38 22 34% 7%
tetrafoil22,5 3.95 38 15 40% 6%

f/3 optic = I=10%! W/cm?



Pulse/wavefront upgrades
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v Shorter pump laser before OPA

* reduces pedestal length
v Replace all transmission optics with reflection

* eliminates pencil beams, but more difficult pointing
v Install adaptive optics systems

* Corrects thermal changes inside pump glass

* Installation complete, set for testing later this
year



Contrast upgrades

Pinhole
Assembly

All reflective

optics for beam[i:

transitions

Vacuum transport t
from pinhole

7

i i ..'. .-':l.' .I.' & .I. I. o e "
o o Al T e .
A B -
.-".':'frr" PP ’

o

N
¥

f I} \\‘
g = |8



Dynamic Focus Mirror installation:
compressor completely rebuilt and ready for DFM

Injection OAP and periscope

_Comp. Position of DFM
Input/output . R |

diagnostics

arget 1/2
switch mirror




Wavefront optimization

- New lensless Off-Axis Parabola architecture

- Phasics SID-4 wavefront sensors (in TC and on
diagnostic table for use when on target)

» corrects the laser wavefront before the compressor
down to A/4 error.

SID-4 Sensors SID-4 program interface showing A/4
residual error measured at compressor input



With DFM active-feedback loop : Strehl ratio > 0.8

TC1 focus 4/30/2015

Focal quality without DeFormable Mirror

The compressed OPCPA pulse focused to 3.9um FWHM with f/3 OAP.
The compressor and final focusing optics preserve beam quality.
OPA pulses have been compressed to 110 fs.




Pulse/focal properties
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New and
Improved!

flat top near field
dbeam = 23 CM
Airy transverse profile

with f/1 final focusing optic:
I(FWHM) = 1.6 x 102> W/cm* (a,=150)

I(Peak) = 1.8 x 10-> W/cm? (a,=350)



Observables and diagnostics:

high energy gamma photons

- simulations predict that the radiation pattern is not collimated
but found in 10-15 degree spread from the laser axis

- Diagnostics should either cover a broad angular range or be
employed at different angles with respect to the laser axis

X 10—5 Log(Number of Photons emitted): 200-300 fs
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Target Chamber 1 Diagnostics

Diagnostic angular range mobility

electron limited very high

spectrometer

ion/proton 1. lon Wide Angle high

spectrometers Spectrometer low at several fixed
2. Thomson ports

parabolas (narrow)

gamma narrow low at several fixed
spectrometers ports (depends on
energy range)

v On going theory and simulation work to
determine best locations for diagnostics,
particularly gamma spectrometers



Gamma to Electron Positron
Magnetic Spectrometer
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Develop tailored to TPW/TC1 experiments by G. Tiwarli, grad student



Theory + Simulations support
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+ Effective field theory for laser-electron interactions
(LL, forthcoming)

- Allows more precise calculations of observables
and accounting for experimental cuts

« Can be combined with classical PIC simulations for
full quantitative predictions

- Updated PSC code ported to SuperMUC (Munich)
and Stampede (UTAustin)

First EPOCH simulations executed on Stampede
(Arefiev+Stark, forthcoming)

reveal challenges in simulations due to intensity
dependent resolution criterion



Summary - Texas Petawatt Statu
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- Texas Petawatt Laser Upgrade is well underway.

- Installation and Testing of adaptive optics has been scheduled by TPW to
commence in September

- New high energy gamma diagnostic design well underway (10-200 MeV)

- collaboration with LANL (M. Espy, J. Kim) for Compton spectrometer (0.5-25
MeV) and Gas Cherenkov detector (NIF, absolute numbers >15 MeV)

- collaboration with Peking University: high sensitivity bubble chamber

- First experiments on electron dynamics in under dense plasma fields
successfully executed, analysis ongoing.

- First Experiments at ultrahigh intensity with AO and F/3 has been scheduled
for 3rd quarter 2015.

 First Experiments at ultrahigh intensity with F/1 has been scheduled for 1st
quarter 2016.



Operation outline
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1. Oscillator produces nj, <100 fs pulses at ~70 MHz repetition m 4

2. Split:
Amplify 10% up to 20 mJ, 10 ps using YbF crystal at 2w

Send 90% through Dazzler to remove phase errors
3. Stretch to 2 ns, matching to 4ns pump, amplified in BBaO and LiBaO (OPA) crystals

— 0.5J 2ns 2.5Hz

Select single pulse by shutter
2 pass glass rod amplifier - 1 J
4 pass rod amplifier - 10 J

N o ok

Focusing optics and pinhole clean up profile
— add adaptive mirror here, corrects thermal variations in pump glass
8. Main amplifier - 120J 150 fs

P, Si doped Yag glass, two materials with different peak frequencies to increase
amplified bandwidth — improves compression capability

9. Compressor — 2nd adaptive mirror and gratings

10. Switch yard after compressor:
TC1 : f/1 parabola for High intensity/high energy experiments
TC2 : f/45 spherical mirror for wakefield experiments



Gamma to Electron Positron Magnetic Spectrometer

Simulations predict high energy photons: E >1 MeV

Dominant energy-loss mechanisms in a medium:

1. Compton Scattering dominates up to 10 or 20
MeV (depending upon the converter)

2. Pair-Production remains the active process of
scattering up to 1 for Titanium as a converter.

positron

electron




Tailoring a GEPMS to TPW: Resolution and Efficiency balance

O Converter Thickness and Energy Resolution

O Expected Signal Calculation with Titanium Converter

O Magnetic Rigidity and Magnetic Field Configurations

O RADIA and Chase calculations for an Efficient GEPMS

magnet

magnet ir

yoke
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Preliminary designs

t1)

Focusing of a 70 MeV
electrons



