Texas Petawatt: Status and Prospects

Lance Labun

Center for High Energy Density Science, Dept. of Physics, The University of Texas, Austin TX 78712

- Laser capabilities
- Laser construction
- Target areas and detector capabilities
- Theory support
- Simulations

The High Intensity Laser Science Group

The University of Texas at Austin

- M. Hegelich, T. Ditmire, M. Downer, A. Arefiev*, G. Shvets
- Students & Postdocs: G. Tiwari, S. Luedtke, Hai-En Tsai, A. Yandow, Xi Zhang, D. Stark*, L. Labun, T. Toncian

* Institute for Fusion Studies, University of Texas, Austin

Collaborators:

- H. Ruhl
 - Department für Physik, Ludwig-Maximilians-Universität, Am Coulombwall 1, D-85748 Garching, Germany
- C. Ridgers
 - York Plasma Institute, Dept. of Physics, University of York, Heslington,York YO10 5DD, United Kingdom

Laser infrastructure

Laser wavelength λ =1.058 µm Full power: 150-170 J / pulse Repetition rate at full power: ~ 1 / hour

Operation outline

- Oscillator produces nJ, <100 fs pulses at ~70 MHz
 repetition
- 2 Short-pulse OPA stages deliver 500 μJ (pumped by 20 mJ, 10 ps using YLF crystal at 2ω)
- Stretch to 2 ns, matching to 4ns 4J pump of next OPA stages (BBO and LBO crystals) → 0.5 J 2ns 2.5 Hz
- 4. 2- and 4-pass Nd:glass rod amplifiers \rightarrow 10 J

Operation outline

NOVA 31 cm Nd:glass disk Amplifiers Main amp multipass telescope Vacuum compressor

- 5. Main amplifier \rightarrow 120 J 150 fs
 - * P, Si doped Nd:glass, two different peak frequencies increase amplified bandwidth, improves compression capability
 - * Adaptive mirror corrects thermal inhomogeneities in pump glass
- 6. Compressor
 - * Adaptive mirror before gratings corrects wavefront for final optics
- 7. Chamber 1 : f/1 or f/3 parabola for High intensity/high energy experiments

Chamber 2 : f/45 spherical mirror for wakefield

Upgrade Contrast and Intensity Goal: >2x10²² W/cm²

- Focusing:
- 2nd adaptive mirror in compressor
- full aperture
- f/1 off-axis parabola
- \Rightarrow I_{ave} > 10²² W/cm² for ~50 cycles
- \Rightarrow **I**_{peak} (Airy) >1 x 10²³
- Baseline experiment: f/3 optic \Rightarrow I \ge 10²¹ W/cm²

	Generated WF µm PTV	Residual (nm RMS)		Used Dynamic (%)	
		Absolute	Relative	Absolute	Relative
active flatness	-	34	-	34%	-
focus	6	33	8	35%	1%
astig	5.8	34	8	34%	1%
astig45	5.95	33	9	33%	2%
comaX	5.83	40	20	31%	5%
comaY	5.87	34	12	37%	4%
trefoil	5.94	35	10	36%	4%
trefoil30	5.94	34	14	37%	4%
AS	2.97	47	25	38%	9%
astig2	3.78	39	23	35%	7%
astig2_45	3.9	37	19	34%	7%
tetrafoil	3.9	38	22	34%	7%
tetrafoil22,5	3.95	38	15	40%	<mark>6%</mark>

Pulse/wavefront upgrades

- ✓ Shorter pump laser before OPA
 - * reduces pedestal length
- Replace all transmission optics with reflection
 - * eliminates pencil beams, but more difficult pointing
- Install adaptive optics systems
 - * Corrects thermal changes inside pump glass
 - * Installation complete, set for testing later this year

Contrast upgrades

Vacuum transport tube from pinhole

All reflective optics for beam transitions

Pinhole

Assembly

Dynamic Focus Mirror installation: compressor completely rebuilt and ready for DFM

Wavefront optimization

- -----
- New lensless Off-Axis Parabola architecture
- Phasics SID-4 wavefront sensors (in TC and on diagnostic table for use when on target)
- corrects the laser wavefront before the compressor down to $\lambda/4$ error.

SID-4 program interface showing $\lambda/4$ residual error measured at compressor input

With DFM active-feedback loop : Strehl ratio > 0.8

Focal quality without DeFormable Mirror

The compressed OPCPA pulse focused to 3.9um FWHM with f/3 OAP. The compressor and final focusing optics preserve beam quality. OPA pulses have been compressed to 110 fs.

Pulse/focal properties

New and improved!

$$I(\theta) = I_0 \left(\frac{2J_1(kasin\theta)}{kasin\theta}\right)^2$$

flat top near field

 $d_{\text{beam}} = 23 \text{ cm}$

$$I_{Peak} = \frac{P_0 A}{\lambda^2 f^2} = 1.8 \times 10^{23} W/cm^2$$

Airy transverse profile

$$w_{foc}^{top-hat} = 2.44\lambda \frac{f}{d_{beam}} = 2.56 \mu m$$

with f/1 final focusing optic: $I(FWHM) = 1.6 \times 10^{22} \text{ W/cm}^2 (a_0 = 150)$ $I(Peak) = 1.8 \times 10^{23} \text{ W/cm}^2 (a_0 = 350)$

Observables and diagnostics:

- Laser-matter interaction at >10²² W/cm² expected to generate high energy gamma photons
- simulations predict that the radiation pattern is not collimated but found in 10-15 degree spread from the laser axis
- Diagnostics should either cover a broad angular range or be employed at different angles with respect to the laser axis

Epoch 2D PIC simulation by D. Stark & A. Arefiev

Target Chamber 1 Diagnostics

Diagnostic	angular range	mobility
electron spectrometer	limited	very high
ion/proton spectrometers	 Ion Wide Angle Spectrometer Thomson parabolas (narrow) 	high Iow at several fixed ports
gamma spectrometers	narrow	<i>low at several fixed ports (depends on energy range)</i>

~~~

 On going theory and simulation work to determine best locations for diagnostics, particularly gamma spectrometers

### Gamma to Electron Positron Magnetic Spectrometer



Develop tailored to TPW/TC1 experiments by G. Tiwari, grad student

## Theory + Simulations support

- Effective field theory for laser-electron interactions (LL, forthcoming)
  - Allows more precise calculations of observables and accounting for experimental cuts
  - Can be combined with classical PIC simulations for full quantitative predictions
- Updated PSC code ported to *SuperMUC* (Munich) and *Stampede* (UTAustin)
- First EPOCH simulations executed on Stampede (Arefiev+Stark, forthcoming)
  - reveal challenges in simulations due to intensity dependent resolution criterion

### Summary – Texas Petawatt Status

- Texas Petawatt Laser Upgrade is well underway.
  - Installation and Testing of adaptive optics has been scheduled by TPW to commence in September
- New high energy gamma diagnostic design well underway (10-200 MeV)
  - collaboration with LANL (M. Espy, J. Kim) for Compton spectrometer (0.5-25 MeV) and Gas Cherenkov detector (NIF, absolute numbers >15 MeV)
  - collaboration with Peking University: high sensitivity bubble chamber
- First experiments on electron dynamics in under dense plasma fields successfully executed, analysis ongoing.
- First Experiments at ultrahigh intensity with AO and F/3 has been scheduled for 3rd quarter 2015.
- First Experiments at ultrahigh intensity with F/1 has been scheduled for 1st quarter 2016.

#### **Operation outline**

- 1. Oscillator produces nJ, <100 fs pulses at  $\sim$ 70 MHz repetition
- 2. Split:

Amplify 10% up to 20 mJ, 10 ps using YbF crystal at  $2\omega$ 

Send 90% through Dazzler to remove phase errors

3. Stretch to 2 ns, matching to 4ns pump, amplified in BBaO and LiBaO (OPA) crystals

→ 0.5 J 2ns 2.5 Hz

- 4. Select single pulse by shutter
- 5. 2 pass glass rod amplifier  $\rightarrow$  1 J
- 6. 4 pass rod amplifier  $\rightarrow$  10 J
- 7. Focusing optics and pinhole clean up profile

 $\rightarrow$  add adaptive mirror here, corrects thermal variations in pump glass

8. Main amplifier  $\rightarrow$  120 J 150 fs

P, Si doped Yag glass, two materials with different peak frequencies to increase amplified bandwidth → improves compression capability

- 9. Compressor  $\rightarrow 2^{nd}$  adaptive mirror and gratings
- 10. Switch yard after compressor:

TC1 : f/1 parabola for High intensity/high energy experiments

TC2 : f/45 spherical mirror for wakefield experiments

Simulations predict high energy photons: E >1 MeV

Dominant energy-loss mechanisms in a medium: **1. Compton Scattering** dominates up to 10 or 20 MeV (depending upon the converter) **2. Pair-Production** remains the active process of scattering up to 1 for Titanium as a converter.



#### Tailoring a GEPMS to TPW: Resolution and Efficiency balance

O Converter Thickness and Energy Resolution

- O Expected Signal Calculation with Titanium Converter
- O Magnetic Rigidity and Magnetic Field Configurations
- **O** RADIA and Chase calculations for an Efficient GEPMS

