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String theory provides effective scenarios with unquantized charged particles

HETEROTIC STRING : E8×E8 → SU(3)× SU(2)×U(1)
︸ ︷︷ ︸

Standard Model

× . . .×U(1)
︸ ︷︷ ︸

Hidden Sector

.

Extra local abelian gauge symmetry in the hidden sector:paraphotonshµν andALPsφ.

Interaction with the visible sector occurs via:L ∼ −χ

2
fµνhµν or L ∼ − g

2
φf̃µνfµν .
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Minicharged particles

We will deal with a parity-preserving Lagrangian, invariant underU(1)×U(1)−gauge group:

L = −
1

16π
fµνf

µν −
1

16π
hµνh

µν −
χ

8π
fµνh

µν + ejµaµ + gH j
µ
H
wµ.
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2 CIRCULAR POLARIZATION!

To analyze the vacuum properties includingMinicharged ParticlesandParaphotonseffects.
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The equations of motion to be solved

k2aµ(k)−

∫
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Vacuum polarization tensor

The polarization tensor decomposesSov. Phys. JETP, Vol. 42, 961 (1976):

Πµν(k, k′) = δ̄k,k′Πµν
0 (k′) + δ̄k,k′−2κΠ

µν
−

(k′) + δ̄k,k′+2κΠ
µν
+ (k′),

Πµν
0 (k′) = −

∑

i=±

πi(k
′)Λµ

i (k
′)Λν∗

i (k′), Πµν
±

(k′) = 2π0(k
′)Λµ

±
(k′)Λν

±(k′)
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The sum of the absorption coefficients coincides with the rate of the photo-production of a pair:

2

= 2 Imà
f

1

TV

2
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Observable effects
The decrement of the probe wave-amplitude induces an ellipticity
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|ψ(ǫ,mǫ, χ)| ≈
1

2

∣
∣
∣
∣(κ− − κ+)τ + χ2 cos

(
n+ − 1

χ2
ωkkkτ

)

exp

(

−
1

χ2
κ+τ

)

− χ2 cos

(
n− − 1

χ2
ωkkkτ

)

exp

(

−
1

χ2
κ−τ

)∣
∣
∣
∣ ≪ 1.
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The absence of these signal is understood within certain confidence levels so that

ψnσ > |ψ(ǫ,mǫ, χ)| and ϑnσ > |ϑ(ǫ,mǫ, χ)|,
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∣
∣
∣(n+ − n−)ωkkkτ + χ2 sin

(
n+ − 1

χ2
ωkkkτ

)

exp

(

−
1

χ2
κ+τ

)

− χ2 sin

(
n− − 1

χ2
ωkkkτ

)

exp

(

−
1

χ2
κ−τ

)∣
∣
∣
∣ ≪ 1

The absence of these signal is understood within certain confidence levels so that

ψnσ > |ψ(ǫ,mǫ, χ)| and ϑnσ > |ϑ(ǫ,mǫ, χ)|,
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Polarimetric constraints
When it comes to evaluate our expressions we have in mind an achievable experimental

condition atPHELIX or LULI facility (nanosecond frontend):
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Summary

1. Absorption and dispersion of photons coupled to minicharged carriers and hidden-photons in

the field of a circularly polarized laser have been investigated.
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1. Absorption and dispersion of photons coupled to minicharged carriers and hidden-photons in

the field of a circularly polarized laser have been investigated.

2. High-precision polarimetric experiments assisted by the field of a high-intensity laser wave can

be powerful probes for testing minicharged particles and paraphotons.

3. The most stringent exclusion limit occurs at the lowest threshold mass: this one being

determined by a certain combination of the field frequenciesand dictated by the

energy-momentum balance of the photo-production of a pair of minicharged particles.

4. Our outcomes complement the results obtained in previousinvestigations developed within the

context of axionlike particlesS. Villalba and A. Di Piazza, JHEP1311, 136, (2013)and

S. Villalba, Nucl. Phys. B881, 391, (2014).
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