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W Light dark matter candidates:
™ Paraphotons.
™ Minicharged Particles.

" Optical properties of the QED vacuum:
= Vacuum polarization tensor.

"1 Dispersion and absorption.

™ Exclusion limits:

! Pure Minicharged Particles model.
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W Light dark matter candidates:
™ Paraphotons.
™ Minicharged Particles.

" Optical properties of the QED vacuum:
= Vacuum polarization tensor.

"1 Dispersion and absorption.

" Exclusion limits:
! Pure Minicharged Particles model.

" Including the Paraphoton effects.

= Summary.
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SU (3)xSU (2)xU (1)

GRAVITY? NATURALNESS

HIERARCHY

% Incomplete framework which must be embedded into a morergetieory.
“1 String theory provides effective scenarios with unquatticharged particles

HETEROTIC STRING: EgxEg— SU(3)xSU(2)xU(1l)x ...xU(1) .

VO d VO
Standard Model Hidden Sector

! Extra local abelian rjauge symmetry in the hidden sector: and
I Interaction with the visible sector occurs via:~ — %f,wh/“’ orL ~ — gcbfw,fﬁ“’.
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Minichar ged particles

= We will deal with a parity-preserving Lagrangian, invatianderU (1) x U(1)—gauge group:

1 1 X : )
1= —16—7Tf,quMV — m—whgyhuy — g;fﬂyh’“’ + ejtay + grjg Wy

™ Herew,, denotes the hidden vector potential with, = 9,,w, — 8, w),,.
™ The parametey < 1 is the mixing coupling factor.
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1 1 X : )
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® Here-.,, denotes the hidueii varctor potential with, = 8,,w, — &, w,,.
W The parametex < 1 is the mixing coupling factor.

O is the hidden-sector gauge coupling.
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General remarks

™ Here we study:

| ._ Interactions either with a hidden fermionic current

MWV< JJFLLI — ,gzefyﬂ,gbe,

or a current built up from hidden scalar fields

b =i (pFOH P — pOHPY).

€

X

II. Additional interaction with an external background field'[— a* + .o/] of the form

M (x) = af cos(sx) + af sin(ex).
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General remarks

™ Here we study:

| ._ Interactions either with a hidden fermionic current

MWV< JJIELI — 1567u¢e,

or a current built up from hidden scalar fields

b =i (pFOH P — pOHPY).

€

X

II. Additional interaction with an external background field'[— a* + .o/] of the form
M (x) = af cos(sx) + af sin(ex).
" g; is a vector which characterizes the laser wave amplitude:

w2 = 0, xa1 = xap = a1a2 = 0,

CIRCULAR POLARIZATION!

"% To analyze the vacuum properties includivighicharged ParticleandParaphotonsffects.
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™ The theoretical description of the problem can be done fromffective action

L[®] = % /d4:r; d*z’ ®T(x)D 1 (z, 2" )®(z) + ...,

W D 1(z, ') inverse Green’s function. Pictorially,

e G D

D _1(x,x’): —
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Effective action

™ The theoretical description of the problem can be done fromffective action
1
L[®] = 5 /d4:r; d*z’ ®T(x)D 1 (z, 2" )®(z) + ...,

W D '(z, ') inverse Green’s function. P.ctorially,

[tk e

D _1(x,x’): —
4 7 -1
W@W WM—FW W

" The transpose of the flavor-stae (z) = [a,(z), w,(x)],
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Effective action

™ The theoretical description of the problem can be done fromffective action

L[®] = % /d4:r; d*z’ ®T(x)D 1 (z, 2" )®(z) + ...,

W D 1(z, ') inverse Green’s function. Pictorially,

I e G ) =

D _1(x,x’): —
4 7 < > -1 < >
+

" The transpose of the flavor-stae (z) = [a,(z), w,(x)],

™ The equations of motion to be solved

2 d4k/ N\ V(1] 1 d4k/ / v/
k Cl,,u,(k) — (271-)4 H,u,y(k,k )CL (k ) + ; Wﬂuy(k,k )’LU (k ) = O,

1 [ d*F y 1 [ d*E )
v (2W)4Huy(k,k’)w (k") + T, (k, K )a” (k') = 0.

HERS xJ @y
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m polarization tensor

polarization tensor decomposesy. Phys. JETP, Vol. 42, 961 (1976)

TIHY (e, k') == 8 gor TIBY (k') o 8 gt 05T (K') + 8 por 2, 1THY (K7,

Mp" () = = > m(K)AS ()AL (), T (K') = 2mo (K) AL (K) AL (K)
1=+

Elastic contribution: diagonalizable with eigenvalues.



\/acuum polarization tensor

™ The polarization tensor decomposes

TT# (o, ) == 8jo ot TIEY (K) 4 Bt 25 TT* (K') + s 425 T1H (),

T4 (k') = 2mo (KAYAM (K)AY (K)

A

" Elastic/contribution: diagonalizable with eigenvalues.

IpY (k') = = > mi(k)AK (k)AL

M Inelastic termsnegligible for counter propagating geometry!
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\/acuum polarization tensor

™ The polarization tensor decomposes

TT# (o, ) == 8jo ot TIEY (K) 4 Bt 25 TT* (K') + s 425 T1H (),
IEY (k') = — ) m(K)AL (KA (K), TR (k') = 2mo (k") AL (k)AL (K)
1=+

" Elastic contribution: diagonalizable with eigenvalues.
M |Inelastic termsnegligible for counter propagating geometry!

™ One can introduce the refractive indices and the absorptefficients

Re m+ Im 7+
and Kt = —

nye =1-— 5 :
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\/acuum polarization tensor

™ The polarization tensor decomposes

T (s, k') == 8 o TIEY (k') 4 ot — 25 TP (B) + 81 7 25 TR (),

IIAY (k) = Zm (K)AL(KYAY* (K'), TI*Y (k') = 2mo (k' )AM (K )AY (K)

" Elastic contribution: diagonalizable with eigenvalues.
W Inelastic termsnegligible for counter propagating geometry!

™ One can introduce the refractive indices and the absorptefficients

Re m+ Im 74
ne =1-— s and Kt = — :
: : 2m2 (142 2 2 2
"% Cumbersome functionswhich depend on n, = meé +Ee) and¢2 = %.
Va4

"™ The sum of the absorption coefficients coincides with the ofthe photo-production of a pair:

2
=2Im
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1
|¢(€7 Mme, X)' ~ 5

—1 1
(k— — k)T + x2 cos <n+X2 wkT) exp (—?mﬂ')

9 n_ —1 1
— X~ cos 5 WET | exp | — k-7 || K 1.
X X




Observable effects

™ The decrement of the probe wave-amplitude induces anieitipt

W(Ga me, X)l ~

ny —1 1
(k— — K1 )T + x° cos ( +X2 wk7'> exp (—?/ﬁ_m')

— X~ cos 5 WkT | eXp | — kT || K 1.
X X

DN | —

™ The relative difference of phase generates a rotation
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™ The relative difference of phase generates a rotation

N | —

|19(€7 me, X)| ~

—1 1
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Observable effects

™ The decrement of the probe wave-amplitude induces anieitipt
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™ The relative difference of phase generates a rotation
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X X
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— X sin 5 WET | exp | — KT || K 1
X X

The absence of these signal is understood within certaifidaarce levels so that

> |¢(€7m€7X)| and > |79(€7m67X)|7
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Polarimetric constraints

™ When it comes to evaluate our expressions we have in mindraevable experimental
condition atPHELIX or LULI facility (nanosecond frontend):

W I~ 10 W/em? [€ < 1], 7 ~ 20 ns ands ~ 1.17 eV.

® Probe beam: an optical laser tao £ 2] with 7,000 = 7.
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Polar imetric constraints

™ When it comes to evaluate our expressions we have in mindraevable experimental
condition atPHELIX or LULI facility (nanosecond frontend):

W I~ 10 W/cm? [€ < 1], 7 ~ 20 nsandsg ~ 1.17 eV.
® Probe beam: an optical laser tao f 2] with 710be = 7.

"™ Counterpropagating geometry and a sensitivity, ~ 10~ 19 rad.

1x10°%} .
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S. Villalba and C. Miiller, JHER506, 177, (2015)
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™ When it comes to evaluate our expressions we have in mindraevable experimental
condition atPHELIX or LULI facility (nanosecond frontend):

W I~ 10 W/cm? [€ < 1], 7 ~ 20 nsandsg ~ 1.17 eV.
® Probe beam: an optical laser tao f 2] with 710be = 7.

"™ Counterpropagating geometry and a sensitivity, ~ 10~ 19 rad.
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Light dark matter candidates in intense laser pulses —f



ary

orption and dispersion of photons coupled to minigedrcarriers and hidden-photons in
ield of a circularly polarized laser have been investida



Stimmary

1. Absorption and dispersion of photons coupled to minigedrcarriers and hidden-photons in
the field of a circularly polarized laser have been investida

2. High-precision polarimetric experiments assisted leyfibld of a high-intensity laser wave can
be powerful probes for testing minicharged particles andaotons.
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2. High-precision polarimetric experiments assisted leyfibld of a high-intensity laser wave can
be powerful probes for testing minicharged particles andaotons.

3. The most stringent exclusion limit occurs at the lowestthold mass: this one being

determined by a certain combination of the field frequenarekdictated by the
energy-momentum balance of the photo-production of a gamrimicharged patrticles.
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Absorption and dispersion of photons coupled to minigedrcarriers and hidden-photons in
the field of a circularly polarized laser have been investida

High-precision polarimetric experiments assisted lyfibld of a high-intensity laser wave can
be powerful probes for testing minicharged particles andaotons.

The most stringent exclusion limit occurs at the lowestdhold mass: this one being
determined by a certain combination of the field frequenarekdictated by the
energy-momentum balance of the photo-production of a gamrimicharged patrticles.

Our outcomes complement the results obtained in prewmwestigations developed within the
context of axionlike particles and
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