First results from the Double ElectroStatic Ion-Ring ExpEriment, DESIREE

M. Gatchell1, H. T. Schmidt1, J. D. Alexander1, G. Andler1, M. Björkhage1, M. Blom1, L. Brännholm1, E. Bäckström1, T. Chen1, W. Geppert1, P. Halldén1, D. Hanstorp2, F. Hellberg1, A. Källberg1, M. Larsson1, S. Leontein1, L. Liljeby1, P. Löfgren1, S. Mannervik1, A. Paál1, P. Reinhed1, K-G. Rensfelt1, S. Rosén1, F. Seitz1, A. Simonsson1, M. H. Stockett1, R. D. Thomas1, H. Zettergren1 and H. Cederquist1

1Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
2Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden

E-mail: gatchell@fysik.su.se

Construction of the Double ElectroStatic Ion-Ring Experiment (DESIREE) \cite{1,2} at Stockholm University has reached completion and the experiment is in the commissioning phase. DESIREE is a novel experiment where two cryogenically cooled electrostatic ion storage rings, each with a 8.6 m circumference, are enclosed in a single cryogenic vacuum chamber and share a common straight interaction section where oppositely charged ions may interact at meV level center-of-mass energies.

The experiment is at operational conditions with an inner chamber temperature of 13 K and pressure below 10^{-13} mbar. The first of the two rings is fully operational and its characteristics have been studied through the storage of 10 keV beams of carbon anions ($\text{C}^-, \text{C}_2^-, \text{C}_3^-$ and C_4^-) and their neutralization through interactions with background rest gas. We are able store a C_2^- beam containing millions of ions. After an initial non-exponential decay due to the effects of space charge, the decay approaches a single exponential behavior with a lifetime of 7.5 minutes (figure 1).

Following the commissioning of the now operational second ring, this unique experiment will enable the study of mutual neutralization of pairs of cooled ions and the measurements of reaction kinetics through the use of a position sensitive multi-hit detector. Thus the study of gas phase ionic chemistry, such as that occurring in the interstellar medium, is possible.

Further commissioning results will be presented at the conference.

References

\begin{figure}[h]
\centering
\begin{subfigure}{0.5\textwidth}
\includegraphics[width=\textwidth]{signal.png}
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
\includegraphics[width=\textwidth]{curve.png}
\end{subfigure}
\caption{Signal from single ring storage of an initial injection of 5×10^5 10 keV C_2^- ions. The ions are being neutralized in collisions with rest gas with a 1/e lifetime of 7.5 minutes.}
\end{figure}