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Eta Carinae

▸ Distance 2.3 kpc
▸ Period 5.54 yr
▸ Last periastron: May 2014
▸ Eccentricity: e ≃ 0.9
▸ Semimajor axis: 16.16 AU
▸ Separation at periastron: 1.66 AU

Primary star
▸ Luminous Blue Variable (LBV)
▸ M ∼ 120M⊙

▸ Ṁ ∼ 5 × 10−4M⊙/yr
▸ vw,∞ = 500kms−1

Secondary star
▸ O or WR
▸ M ∼ 30M⊙

▸ Ṁ ∼ 10−5M⊙/yr
▸ vw,∞ = 3000kms−1
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The X-ray view of Eta Carinae

X-ray model
▸ Hamaguchi et al. 2007:
▸ A low temperature (T ∼ 1 keV) steady emitter enveloping the
binary (CCE)

▸ Hot (T ∼ 4 keV), variable emission from the wind-wind collision
region (WWCR)
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The X-ray view of Eta Carinae

RXTE PCU lightcurve
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The GeV view of Eta Carinae: Flux variability

▸ Recent results from Reitberger et al. (2015)
▸ Slow decrease in �ux after periastron
▸ No evidence for wind collision region collapse!
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Spectral properties (Reitberger et al. 2015)

Two spectral components:
▸ 1 GeV< E <10 GeV: Power law
with a cuto� at

▸ periastron: Ec = 1.6 ± 1 GeV
▸ apastron: Ec = 17 ± 6 GeV

▸ E > 10 GeV: Hard powerlaw
with Γ = 2.0 ± 0.1 during
periastron.

E
²F

 [
e
rg

 c
m
⁻²

 s
⁻¹

]

10−12

10−11

Energy [GeV]
1 10 100

Periastron Apastron

Vı́ctor Zabalza (University of Leicester) Time-dependent modelling of Eta Carinae 6 / 19



Proposed scenarios for GeV phenomenology

▸ Reitberger et al. (2012)
▸ Double spectral component arises from pair production
absorption feature by circumbinary UV emiter.

▸ LUV ∼ 5 × 1037 erg s−1 required for this absorber, but no
observational evidence of its existence.

▸ Farnier et al. (2011)
▸ Low energy component as IC emission, upscattering stellar
photons.

▸ High energy component as π0 decay in the dense shocked
stellar wind.

▸ Acceleration of electrons to few tens of GeV requires super
Bohm acceleration around periastron

▸ No time dependence or particle distribution evolution
considered
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A time dependent particle acceleration,
evolution and radiation model of η Car

Ohm, S., Zabalza, V., Hinton, J.A. & Parkin, E.R., 2015,
On the origin of γ-ray emission in η Carina

MNRAS, 449, L132 arXiv:1502.04056
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Dynamical model

▸ Analytical
description
based on Parkin
& Pittard (2008).

▸ 82x100 Bins are
followed as they
move outwards
on the shock cap
and then shoot
out ballistically.
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Dynamical model
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Shock and post-shock region properties

▸ Radiative regime can be estimated by
(Stevens 1992):

χ = tcool
tesc

≃ v43d12
Ṁ7

▸ Primary wind:
χprim = 10−4 − 10−3 → radiative

▸ Secondary wind:
χsec = 10 − 100→ adiabatic
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Primary wind

φ = 0.05
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For each time step and shock cap bin:
▸ Compute steady state spectrum
from pp or Sync+IC+Bremss losses
for protons and electrons,
respectively, assuming ηacc = 10.

▸ Epmax ≈ 100 GeV
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Secondary wind

φ = 0.05
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▸ The secondary post-shock density
is low enough that protons do not
interact during their �ow along the
shock cap→ not a steady state.

▸ Maximum energy is set by the total
time the particles remain in the
shock before they �ow away.
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Acceleration in the Secondary shock

▸ Acceleration conditions change along the shock-cap within
loss timescale: Time-dependent acceleration needed!

▸ Lagrangian acceleration scheme, based on DSA in a strong
shock, to track the particle populations at the shock and
downstream of the shock with time:

▸ At each time step ∆t << tacc , low energy particles are injected.
▸ The existing particles in the shock gain a factor exp(∆t/tacc) in
energy, and

▸ A fraction (1 − exp(−∆t/tacc)) of the particles in the shock are
advected downstream. These are transported with the �ow and
lose energy through pp interaction.

▸ When a given bin reaches the edge of the shock cap, the two
shock layers mix within 1011 cm and radiate.
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Acceleration: CR Shock modi cation

▸ In the outer part of the
shock-cap, ram pressure is
low, and cosmic ray pressure
at the shock is high.

▸ We apply nonlinear
modi cation to acceleration
scheme following Berezhko
& Ellison (1999).
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Results: SED
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Results: Lightcurve
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Conclusions

▸ The GeV phenomenology of η Car is well charaterised by
emission from protons accelerated in the primary and
secondary stellar wind shocks.

▸ Where are all the other gamma-ray emitting wind colliding
binaries?

▸ Looking forward to the observational results during the 2014
May periastron: NuSTAR, Fermi, HESS-II.
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Full details

Ohm, S., Zabalza, V., Hinton, J.A. & Parkin, E.R., 2015,
On the origin of γ-ray emission in η Carina
MNRAS, 449, L132 arXiv:1502.04056
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